skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Davis, Shane W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chemical models and experiments indicate that interstellar dust grains and their ice mantles play an important role in the production of complex organic molecules (COMs). To date, the most complex solid-phase molecule detected with certainty in the interstellar medium is methanol, but the James Webb Space Telescope (JWST) may be able to identify still larger organic species. In this study, we use a coupled chemodynamical model to predict new candidate species for JWST detection toward the young star-forming core Cha-MMS1, combining the gas–grain chemical kinetic code MAGICKAL with a 1D radiative hydrodynamics simulation using Athena++ . With this model, the relative abundances of the main ice constituents with respect to water toward the core center match well with typical observational values, providing a firm basis to explore the ice chemistry. Six oxygen-bearing COMs (ethanol, dimethyl ether, acetaldehyde, methyl formate, methoxy methanol, and acetic acid), as well as formic acid, show abundances as high as, or exceeding, 0.01% with respect to water ice. Based on the modeled ice composition, the infrared spectrum is synthesized to diagnose the detectability of the new ice species. The contribution of COMs to IR absorption bands is minor compared to the main ice constituents, and the identification of COM ice toward the core center of Cha-MMS1 with the JWST NIRCAM/Wide Field Slitless Spectroscopy (2.4–5.0 μ m) may be unlikely. However, MIRI observations (5–28 μ m) toward COM-rich environments where solid-phase COM abundances exceed 1% with respect to the column density of water ice might reveal the distinctive ice features of COMs. 
    more » « less
  2. Abstract

    Cosmic rays (CRs) are an important energy source in the circumgalactic medium that impact the multiphase gas structure and dynamics. We perform two-dimensional CR-magnetohydrodynamic simulations to investigate the role of CRs in accelerating multiphase gas formed via thermal instability. We compare outflows driven by CRs to those driven by a hot wind with equivalent momentum. We find that CR-driven outflow produces lower density contrast between cold and hot gas due to nonthermal pressure support, and yields a more filamentary cloud morphology. While entrainment in a hot wind can lead to cold gas increasing due to efficient cooling, CRs tend to suppress cold gas growth. The mechanism of this suppression depends on magnetic field strength, with CRs either reducing cooling or shredding the clouds by differential acceleration. Despite the suppression of cold gas growth, CRs are able to launch the cold clouds to observed velocities without rapid destruction. The dynamical interaction between CRs and multiphase gas is also sensitive to the magnetic field strength. In relatively strong fields, the CRs are more important for direct momentum input to cold gas. In relatively weak fields, the CRs impact gas primarily by heating, which modifies gas pressure.

    more » « less

    Cosmic rays (CRs) are thought to be an important feedback mechanism in star-forming galaxies. They can provide an important source of pressure support and possibly drive outflows. We perform multidimensional CR magnetohydrodynamic simulations including transport by streaming and diffusion to investigate wind launching from an initially hydrostatic atmosphere by CRs. We estimate a characteristic Eddington limit on the CR flux for which the CR force exceeds gravity and compare it to simulated systems. Scaling our results to conditions in star-forming galaxies, we find that CRs are likely to contribute to driving outflows for a broad range of star formation environments. We quantify the momentum and energy transfer between CRs and gas, along with the associated mass outflow rates under different assumptions about the relative importance of streaming and diffusion for transport. In simulations with streaming, we observe the growth and saturation of the CR acoustic instability, but the CRs and gas remain well coupled, with CR momentum transferred efficiently to the gas even when this instability is present. Higher CR fluxes transfer more energy to the gas and drive stronger outflows. When streaming is present, most of the transferred energy takes the form of Alfvén wave heating of the gas, raising its pressure and internal energy, with a lower fractional contribution to the kinetic energy of the outflow. We also consider runs with radiative cooling, which modifies gas temperature and pressure profiles but does not seem to have a large impact on the mass outflow for super-Eddington CR fluxes.

    more » « less
  4. null (Ed.)