skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De Bruyne, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate a moving boundary problem for a Brownian particle on the semi-infinite line in which the boundary moves by a distance proportional to the time between successive collisions of the particle and the boundary. Phenomenologically rich dynamics arises. In particular, the probability for the particle to first reach the moving boundary for the n th time asymptotically scales as t − ( 1 + 2 − n ) . Because the tail of this distribution becomes progressively fatter, the typical time between successive first passages systematically gets longer. We also find that the number of collisions between the particle and the boundary scales as ln ln  t , while the time dependence of the boundary position varies as t /ln  t . 
    more » « less
  2. Abstract We introduce a minimalist dynamical model of wealth evolution and wealth sharing among N agents as a platform to compare the relative merits of altruism and individualism. In our model, the wealth of each agent independently evolves by diffusion. For a population of altruists, whenever any agent reaches zero wealth (that is, the agent goes bankrupt), the remaining wealth of the other N − 1 agents is equally shared among all. The population is collectively defined to be bankrupt when its total wealth falls below a specified small threshold value. For individualists, each time an agent goes bankrupt (s)he is considered to be ‘dead’ and no wealth redistribution occurs. We determine the evolution of wealth in these two societies. Altruism leads to more global median wealth at early times; eventually, however, the longest-lived individualists accumulate most of the wealth and are richer and more long lived than the altruists. 
    more » « less
  3. Abstract We introduce a minimalist dynamical model of wealth evolution and wealth sharing among N agents as a platform to compare the relative merits of altruism and individualism. In our model, the wealth of each agent independently evolves by diffusion. For a population of altruists, whenever any agent reaches zero wealth (that is, the agent goes bankrupt), the remaining wealth of the other N − 1 agents is equally shared among all. The population is collectively defined to be bankrupt when its total wealth falls below a specified small threshold value. For individualists, each time an agent goes bankrupt (s)he is considered to be ‘dead’ and no wealth redistribution occurs. We determine the evolution of wealth in these two societies. Altruism leads to more global median wealth at early times; eventually, however, the longest-lived individualists accumulate most of the wealth and are richer and more long lived than the altruists. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)