skip to main content

Search for: All records

Creators/Authors contains: "De Souza, S. Fonseca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The production of Z bosons associated with jets is measured in $$\text {p}\text {p}$$ pp collisions at $$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 $$\,\text {fb}^{-1}$$ fb - 1 . The multiplicity of jets with transverse momentum $$p_{\textrm{T}} > 30\,\text {Ge}\hspace{-.08em}\text {V} $$ p T > 30 Ge V is measured for different regions of the Z boson’s $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) , from lower than 10 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V to higher than 100 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V . The azimuthal correlation $$\varDelta \phi $$ Δ ϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) . The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects ofmore »multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $$p_{\textrm{T}} (\text {Z })$$ p T ( Z ) regions.« less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract Multijet events at large transverse momentum ( $$p_{\textrm{T}}$$ p T ) are measured at $$\sqrt{s}=13\,\text {TeV} $$ s = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of $$36.3{\,\text {fb}^{-1}} $$ 36.3 fb - 1 . The multiplicity of jets with $$p_{\textrm{T}} >50\,\text {GeV} $$ p T > 50 GeV that are produced in association with a high- $$p_{\textrm{T}}$$ p T dijet system is measured in various ranges of the $$p_{\textrm{T}}$$ p T of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $$\varDelta \phi _{1,2}$$ Δ ϕ 1 , 2 between the two highest $$p_{\textrm{T}}$$ p T jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $$p_{\textrm{T}}$$ p T jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production ( $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ ) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V . The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ fb - 1 . The differential $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of $$173.06 \pm 0.84\,\text {Ge}\hspace{-.08em}\text {V} $$ 173.06 ± 0.84 Ge V .
    Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Abstract Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width—related to its lifetime—is an important parameter. One way to determine this quantity is to measure its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here we report evidence for such off-shell contributions to the production cross-section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at the 95% confidence level. The scenario with no off-shell contribution is excluded at a p -value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as $${{{\varGamma }}}_{{{{{{\rm{H}}}}}}}={3.2}_{-1.7}^{+2.4}\,{{{{{\rm{MeV}}}}}}$$ Γ H = 3.2 − 1.7 + 2.4 MeV , in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.
    Free, publicly-accessible full text available November 1, 2023