Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nuclei segmentation is a fundamental task in histopathological image analysis. Typically, such segmentation tasks require significant effort to manually generate pixel-wise annotations for fully supervised training. To alleviate the manual effort, in this paper we propose a novel approach using points only annotation. Two types of coarse labels with complementary information are derived from the points annotation, and are then utilized to train a deep neural network. The fully- connected conditional random field loss is utilized to further refine the model without introducing extra computational complexity during inference. Experimental results on two nuclei segmentation datasets reveal that the proposed methodmore »
-
Nuclei segmentation and classification are two important tasks in the histopathology image analysis, because the mor- phological features of nuclei and spatial distributions of dif- ferent types of nuclei are highly related to cancer diagnosis and prognosis. Existing methods handle the two problems independently, which are not able to obtain the features and spatial heterogeneity of different types of nuclei at the same time. In this paper, we propose a novel deep learning based method which solves both tasks in a unified framework. It can segment individual nuclei and classify them into tumor, lymphocyte and stroma nuclei. Perceptual loss ismore »
-
Free, publicly-accessible full text available September 1, 2022
-
Free, publicly-accessible full text available September 1, 2022
-
Free, publicly-accessible full text available August 1, 2022
-
Abstract The coherent photoproduction of $$\mathrm{J}/\psi $$ J / ψ and $${\uppsi '}$$ ψ ′ mesons was measured in ultra-peripheral Pb–Pb collisions at a center-of-mass energy $$\sqrt{s_{\mathrm {NN}}}~=~5.02$$ s NN = 5.02 TeV with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $$\mathrm{J}/\psi $$ J / ψ is reconstructed using the dilepton ( $$l^{+} l^{-}$$ l + l - ) and proton–antiproton decay channels, while for the $${\uppsi '}$$ ψ ′ the dilepton and the $$l^{+} l^{-} \pi ^{+} \pi ^{-}$$ l + l - πmore »Free, publicly-accessible full text available August 1, 2022
-
Free, publicly-accessible full text available August 1, 2022
-
Abstract The production of $$\phi $$ ϕ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $$2.5< y < 4$$ 2.5 < y < 4 . Measurements of the differential cross section $$\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}}$$ d 2 σ / d y d p T are presented as a function of the transverse momentum ( $$p_{\mathrm {T}}$$ p T ) at the center-of-mass energies $$\sqrt{s}=5.02$$ s = 5.02 , 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $$\sqrt{s}=5.02$$more »Free, publicly-accessible full text available August 1, 2022
-
Free, publicly-accessible full text available August 1, 2022