- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dai, Xinyu (2)
-
DeFrancesco, Cora (2)
-
Bersier, David (1)
-
Bhatiani, Saloni (1)
-
Bose, Subhash (1)
-
Chen, Ping (1)
-
Cheng, Jigui (1)
-
Choi, Hyunseop (1)
-
Cox, John (1)
-
DeFrancesco, Cora A. (1)
-
Do, Aaron (1)
-
Dong, Subo (1)
-
Gallagher, Sarah C. (1)
-
Holoien, Thomas W.-S. (1)
-
Huber, Mark E. (1)
-
Jayasinghe, T. (1)
-
Kochanek, Christopher S. (1)
-
Leighly, Karen M. (1)
-
Liang, Enwei (1)
-
Mishra, Hora D. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The X-ray emission from active galactic nuclei is believed to come from a combination of inverse Compton scattering of photons from the accretion disk and reprocessing of the direct X-ray emission by reflection. We present hard (10–80 keV) and soft (0.5–8 keV) X-ray monitoring of a gravitationally lensed quasar RX J1131−1231 (hereafter RXJ1131) with NuSTAR, Swift, and XMM-Newton between 2016 June 10 and 2020 November 30. Comparing the amplitude of quasar microlensing variability at the hard and soft bands allows a size comparison, where larger sources lead to smaller microlensing variability. During the period between 2018 June 6 and 2020 November 30, where both the hard and soft light curves are available, the hard and soft bands varied by factors of 3.7 and 5.5, respectively, with rms variability of 0.40 ± 0.05 and 0.57 ± 0.02. Both the variability amplitude and rms are moderately smaller for the hard X-ray emission, indicating that the hard X-ray emission is moderately larger than the soft X-ray emission region. We found the reflection fraction from seven joint hard and soft X-ray monitoring epochs is effectively consistent with a constant with low significance variability. After decomposing the total X-ray flux into direct and reprocessed components, we find a smaller variability amplitude for the reprocessed flux compared to the direct emission. The power-law cutoff energy is constrained at keV, which positions the system in the allowable parameter space due to the pair production limit.more » « less
-
Leighly, Karen M.; Choi, Hyunseop; DeFrancesco, Cora; Voelker, Julianna; Terndrup, Donald M.; Gallagher, Sarah C.; Richards, Gordon T. (, The Astrophysical Journal)Abstract We report the results of an analysis of the Hβemission line region of a sample of 30 low-redshift (z< 1) iron low-ionization broad absorption line quasars (FeLoBALQs). Eleven of these objects are newly classified as FeLoBALQs. A matched sample of 132 unabsorbed quasars was analyzed in parallel. The emission lines showed the well-known anticorrelation between the [Oiii] and Feiiemission. Using a summary statistic calledE1 to quantify this anticorrelation, we found that while the distribution ofE1 for the unabsorbed quasars has a single peak, the FeLoBALQs have a bimodal shape in this parameter. Previous studies have shown that the line emission properties of BAL and non-BALQs are consistent; therefore, the difference in the Hβregion emission between FeLoBALQs and unabsorbed quasars is a new result. The two populations of FeLoBALQs are characterized by low and high bolometric luminosities and Eddington ratios. Some previous studies have suggested that BALQs are high accretion rate objects and therefore the discovery of the low accretion rate branch of FeLoBAL quasars was unexpected. We also found that the HβFWHM is systematically broader among the FeLoBALQs, implying a higher inclination viewing angle or a dearth of low velocity line emitting gas.more » « less
-
Mishra, Hora D.; Dai, Xinyu; Chen, Ping; Cheng, Jigui; Jayasinghe, T.; Tucker, Michael A.; Vallely, Patrick J.; Bersier, David; Bose, Subhash; Do, Aaron; et al (, The Astrophysical Journal)null (Ed.)
An official website of the United States government
