skip to main content

Search for: All records

Creators/Authors contains: "DeLong, Edward F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phage satellites are mobile genetic elements that propagate by parasitizing bacteriophage replication. We report here the discovery of abundant and diverse phage satellites that were packaged as concatemeric repeats within naturally occurring bacteriophage particles in seawater. These same phage-parasitizing mobile elements were found integrated in the genomes of dominant co-occurring bacterioplankton species. Like known phage satellites, many marine phage satellites encoded genes for integration, DNA replication, phage interference, and capsid assembly. Many also contained distinctive gene suites indicative of unique virus hijacking, phage immunity, and mobilization mechanisms. Marine phage satellite sequences were widespread in local and global oceanic virioplankton populations, reflecting their ubiquity, abundance, and temporal persistence in marine planktonic communities worldwide. Their gene content and putative life cycles suggest they may impact host-cell phage immunity and defense, lateral gene transfer, bacteriophage-induced cell mortality and cellular host and virus productivity. Given that marine phage satellites cannot be distinguished from bona fide viral particles via commonly used microscopic techniques, their predicted numbers (∼3.2 × 10 26 in the ocean) may influence current estimates of virus densities, production, and virus-induced mortality. In total, the data suggest that marine phage satellites have potential to significantly impact the ecology and evolution of bacteria and their viruses throughout the oceans. We predict that any habitat that harbors bacteriophage will also harbor similar phage satellites, making them a ubiquitous feature of most microbiomes on Earth. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract Microbial communities are critical to ecosystem dynamics and biogeochemical cycling in the open oceans. Viruses are essential elements of these communities, influencing the productivity, diversity, and evolution of cellular hosts. To further explore the natural history and ecology of open-ocean viruses, we surveyed the spatiotemporal dynamics of double-stranded DNA (dsDNA) viruses in both virioplankton and bacterioplankton size fractions in the North Pacific Subtropical Gyre, one of the largest biomes on the planet. Assembly and clustering of viral genomes revealed a peak in virioplankton diversity at the base of the euphotic zone, where virus populations and host species richness both reached their maxima. Simultaneous characterization of both extracellular and intracellular viruses suggested depth-specific reproductive strategies. In particular, analyses indicated elevated lytic interactions in the mixed layer, more temporally variable temperate phage interactions at the base of the euphotic zone, and increased lysogeny in the mesopelagic ocean. Furthermore, the depth variability of auxiliary metabolic genes suggested habitat-specific strategies for viral influence on light-energy, nitrogen, and phosphorus acquisition during host infection. Most virus populations were temporally persistent over several years in this environment at the 95% nucleic acid identity level. In total, our analyses revealed variable distributional patterns and diverse reproductive and metabolic strategies of virus populations in the open-ocean water column. 
    more » « less