- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bonafide, Christopher P. (2)
-
DeMauro, Sara B. (2)
-
Weimer, James (2)
-
Herrick, Heidi M. (1)
-
Lee, Insup (1)
-
Passarella, Molly (1)
-
Pugh, Sydney (1)
-
Ruchkin, Ivan (1)
-
Sokolsky, Oleg (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pugh, Sydney; Ruchkin, Ivan; Bonafide, Christopher P.; DeMauro, Sara B.; Sokolsky, Oleg; Lee, Insup; Weimer, James (, 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE))False alarms generated by physiological monitors can overwhelm clinical caretakers with a variety of alarms. The resulting alarm fatigue can be mitigated with alarm suppression. Before being deployed, such suppression mechanisms need to be evaluated through a costly observational study, which would determine and label the truly suppressible alarms. This paper proposes a lightweight method for evaluating alarm suppression without access to the true alarm labels. The method is based on the data programming paradigm, which combines noisy and cheap-to-obtain labeling heuristics into probabilistic labels. Based on these labels, the method estimates the sensitivity/specificity of a suppression mechanism and describes the likely outcomes of an observational study in the form of confidence bounds. We evaluate the proposed method in a case study of low SpO2 alarms using a dataset collected at Children's Hospital of Philadelphia and show that our method provides tight and accurate bounds that significantly outperform the naive comparative method.more » « less
An official website of the United States government
