skip to main content


Search for: All records

Creators/Authors contains: "DeMott, Charlotte A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 27, 2024
  2. Abstract

    Surface freshening through precipitation can act to stably stratify the upper ocean, forming a rain layer (RL). RLs inhibit subsurface vertical mixing, isolating deeper ocean layers from the atmosphere. This process has been studied using observations and idealized simulations. The present ocean modeling study builds upon this body of work by incorporating spatially resolved and realistic atmospheric forcing. Fine‐scale observations of the upper ocean collected during the Dynamics of the Madden‐Julian Oscillation field campaign are used to verify the General Ocean Turbulence Model (GOTM). Spatiotemporal characteristics of equatorial Indian Ocean RLs are then investigated by forcing a 2D array of GOTM columns with realistic and well‐resolved output from an existing regional atmospheric simulation. RL influence on the ocean‐atmosphere system is evaluated through analysis of RL‐induced modification to surface fluxes and sea surface temperature (SST). This analysis demonstrates that RLs cool the ocean surface on time scales longer than the associated precipitation event. A second simulation with identical atmospheric forcing to that in the first, but with rainfall set to zero, is performed to investigate the role of rain temperature and salinity stratification in maintaining cold SST anomalies within RLs. Approximately one third, or 0.1°C, of the SST reduction within RLs can be attributed to rain effects, while the remainder is attributed to changes in atmospheric temperature and humidity. The prolonged RL‐induced SST anomalies enhance SST gradients that have been shown to favor the initiation of atmospheric convection. These findings encourage continued research of RL feedbacks to the atmosphere.

     
    more » « less
  3. Abstract

    The response of the Madden‐Julian oscillation (MJO) to ocean feedbacks is studied with coupled and uncoupled simulations of four general circulation models (GCMs). Monthly mean sea surface temperature (SST) from each coupled model is prescribed to its respective uncoupled simulation, to ensure identical SST mean‐state and low‐frequency variability between simulation pairs. Consistent with previous studies, coupling improves each model's ability to propagate MJO convection beyond the Maritime Continent. Analysis of the MJO moist static energy budget reveals that improved MJO eastward propagation in all four coupled models arises from enhanced meridional advection of column water vapor (CWV). Despite the identical mean‐state SST in each coupled and uncoupled simulation pair, coupling increases mean‐state CWV near the equator, sharpening equatorward moisture gradients and enhancing meridional moisture advection and MJO propagation. CWV composites during MJO and non‐MJO periods demonstrate that the MJO itself does not cause enhanced moisture gradients. Instead, analysis of low‐level subgrid‐scale moistening conditioned by rainfall rate (R) and SST anomaly reveals that coupling enhances low‐level convective moistening forR> 5 mm day−1; this enhancement is most prominent near the equator. The low‐level moistening process varies among the four models, which we interpret in terms of their ocean model configurations, cumulus parameterizations, and sensitivities of convection to column relative humidity.

     
    more » « less
  4. Abstract

    Since its discovery in the early 1970s, the crucial role of the Madden‐Julian Oscillation (MJO) in the global hydrological cycle and its tremendous influence on high‐impact climate and weather extremes have been well recognized. The MJO also serves as a primary source of predictability for global Earth system variability on subseasonal time scales. The MJO remains poorly represented in our state‐of‐the‐art climate and weather forecasting models, however. Moreover, despite the advances made in recent decades, theories for the MJO still disagree at a fundamental level. The problems of understanding and modeling the MJO have attracted significant interest from the research community. As a part of the AGU's Centennial collection, this article provides a review of recent progress, particularly over the last decade, in observational, modeling, and theoretical study of the MJO. A brief outlook for near‐future MJO research directions is also provided.

     
    more » « less