Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sea surface temperature (SST) gradients are a primary driver of low‐level wind convergence in the east Pacific Inter‐Tropical Convergence Zone (ITCZ) through their hydrostatic relationship to the surface pressure gradient force (PGF). However, the surface PGF may not always align with SST gradients due to variations in boundary layer temperature gradients with height, that is, the boundary layer contribution to the surface PGF. In this study, we investigate the observed northern hemisphere position of the east Pacific ITCZ using a slab boundary layer model (SBLM) driven by different approximations of the boundary layer virtual temperature field. SBLM simulations using the entire boundary layer virtual temperature profile produce a realistic northern hemisphere ITCZ. However, SST‐only simulations produce excessive equatorial divergence and southern hemisphere convergence, resulting in a latitudinally confined double ITCZ‐like structure. Observed virtual temperature gradients highlight the importance of northward temperature gradients strengthening with height from the equator to 15°S below the trade wind inversion (TWI). Our interpretation is that the equatorial cold tongue induces relatively weak high surface pressure and double ITCZ‐like convergence because the resulting layer of cold air is shallow. Concurrently, relatively strong high surface pressure spreads out in the southern hemisphere due to interactions between stratocumulus clouds and the ocean surface. Together, the equatorial cold tongue and the TWI/stratocumulus clouds enable a more northern hemisphere dominant ITCZ. Thus, we provide evidence of a dynamical link between the equatorial cold tongue, low clouds, and double ITCZs, which continue to be problematic in Earth system models.more » « less
-
Abstract Surface freshening through precipitation can act to stably stratify the upper ocean, forming a rain layer (RL). RLs inhibit subsurface vertical mixing, isolating deeper ocean layers from the atmosphere. This process has been studied using observations and idealized simulations. The present ocean modeling study builds upon this body of work by incorporating spatially resolved and realistic atmospheric forcing. Fine‐scale observations of the upper ocean collected during the Dynamics of the Madden‐Julian Oscillation field campaign are used to verify the General Ocean Turbulence Model (GOTM). Spatiotemporal characteristics of equatorial Indian Ocean RLs are then investigated by forcing a 2D array of GOTM columns with realistic and well‐resolved output from an existing regional atmospheric simulation. RL influence on the ocean‐atmosphere system is evaluated through analysis of RL‐induced modification to surface fluxes and sea surface temperature (SST). This analysis demonstrates that RLs cool the ocean surface on time scales longer than the associated precipitation event. A second simulation with identical atmospheric forcing to that in the first, but with rainfall set to zero, is performed to investigate the role of rain temperature and salinity stratification in maintaining cold SST anomalies within RLs. Approximately one third, or 0.1°C, of the SST reduction within RLs can be attributed to rain effects, while the remainder is attributed to changes in atmospheric temperature and humidity. The prolonged RL‐induced SST anomalies enhance SST gradients that have been shown to favor the initiation of atmospheric convection. These findings encourage continued research of RL feedbacks to the atmosphere.more » « less
-
Abstract Since its discovery in the early 1970s, the crucial role of the Madden‐Julian Oscillation (MJO) in the global hydrological cycle and its tremendous influence on high‐impact climate and weather extremes have been well recognized. The MJO also serves as a primary source of predictability for global Earth system variability on subseasonal time scales. The MJO remains poorly represented in our state‐of‐the‐art climate and weather forecasting models, however. Moreover, despite the advances made in recent decades, theories for the MJO still disagree at a fundamental level. The problems of understanding and modeling the MJO have attracted significant interest from the research community. As a part of the AGU's Centennial collection, this article provides a review of recent progress, particularly over the last decade, in observational, modeling, and theoretical study of the MJO. A brief outlook for near‐future MJO research directions is also provided.more » « less