- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Cao, Lei (1)
-
DeOliveira, Joshua C (1)
-
Hofmann, Dennis M (1)
-
Ma, Lei (1)
-
Rundensteiner, Elke A (1)
-
VanNostrand, Peter M (1)
-
Zhang, Huayi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Due to the scarcity of reliable anomaly labels, recent anomaly detection methods leveraging noisy auto-generated labels either select clean samples or refurbish noisy labels. However, both approaches struggle due to the unique properties of anomalies.Sample selectionoften fails to separate sufficiently many clean anomaly samples from noisy ones, whilelabel refurbishmenterroneously refurbishesmarginalclean samples. To overcome these limitations, we design Unity, thefirstlearning from noisy labels (LNL) approach for anomaly detection that elegantly leverages the merits of both sample selection and label refurbishment to iteratively prepare a diverse clean sample set for network training. Unity uses a pair of deep anomaly networks to collaboratively select samples with clean labels based on prediction agreement, followed by a disagreement resolution mechanism to capture marginal samples with clean labels. Thereafter, Unity utilizes unique properties of anomalies to design an anomaly-centric contrastive learning strategy that accurately refurbishes the remaining noisy labels. The resulting set, composed ofselected and refurbishedclean samples, will be used to train the anomaly networks in the next training round. Our experimental study on 10 real-world benchmark datasets demonstrates that Unity consistently outperforms state-of-the-art LNL techniques by up to 0.31 in F-1 Score (0.52 \rightarrow 0.83).more » « lessFree, publicly-accessible full text available February 10, 2026
An official website of the United States government
