Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2025
-
A search for hidden-charm pentaquark states decaying to a range ofandfinal states, as well as doubly charmed pentaquark states toand, is made using samples of proton-proton collision data corresponding to an integrated luminosity ofrecorded by the LHCb detector at. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of thebaryon in thedecay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.
© 2024 CERN, for the LHCb Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025 -
Garisto, R (Ed.)The ratios of branching fractions R(D*)= B(B0 --> D*+tau- nu(bar))/ B(B0--> D*+mu- nu(bar)) and R(D)= B(B0 --> D0tau- nu(bar))/ B(B0 --> D0mu- nu(bar)) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ− → μ−ντν¯μ. The measured values are R*D*)= 0.281+/- 0.018+/- 0.024 and R(D0)=0.441+/- 0.060+/- 0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ= −0.43. The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard modelmore » « less