skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Deason, Alis J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy,β, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo.

     
    more » « less
  2. ABSTRACT

    Accreted stellar populations are comprised of the remnants of destroyed galaxies, and often dominate the ‘stellar haloes’ of galaxies such as the Milky Way (MW). This ensemble of external contributors is a key indicator of the past assembly history of a galaxy. We introduce a novel statistical method that uses the unbinned metallicity distribution function (MDF) of a stellar population to estimate the mass spectrum of its progenitors. Our model makes use of the well-known mass–metallicity relation of galaxies and assumes Gaussian MDF distributions for individual progenitors: the overall MDF is thus a mixture of MDFs from smaller galaxies. We apply the method to the stellar halo of the MW, as well as the classical MW satellite galaxies. The stellar components of the satellite galaxies have relatively small sample sizes, but we do not find any evidence for accreted populations with L > Lhost/100. We find that the MW stellar halo has N ∼ 1−3 massive progenitors (L ≳ 108L⊙) within 10 kpc, and likely several hundred progenitors in total. We also test our method on simulations of MW-mass haloes, and find that our method is able to recover the true accreted population within a factor of 2. Future data sets will provide MDFs with orders of magnitude more stars, and this method could be a powerful technique to quantify the accreted populations down to the ultra-faint dwarf mass scale for both the MW and its satellites.

     
    more » « less
  3. Abstract

    We present the lifetime star formation histories (SFHs) for six ultrafaint dwarf (UFD;MV> − 7.0,4.9<log10(M*(z=0)/M)<5.5) satellite galaxies of M31 based on deep color–magnitude diagrams constructed from Hubble Space Telescope imaging. These are the first SFHs obtained from the oldest main-sequence turnoff of UFDs outside the halo of the Milky Way (MW). We find that five UFDs formed at least 50% of their stellar mass byz= 5 (12.6 Gyr ago), similar to known UFDs around the MW, but that 10%–40% of their stellar mass formed at later times. We uncover one remarkable UFD, Andxiii, which formed only 10% of its stellar mass byz= 5, and 75% in a rapid burst atz∼ 2–3, a result that is robust to choices of underlying stellar model and is consistent with its predominantly red horizontal branch. This “young” UFD is the first of its kind and indicates that not all UFDs are necessarily quenched by reionization, which is consistent with predictions from several cosmological simulations of faint dwarf galaxies. SFHs of the combined MW and M31 samples suggest reionization did not homogeneously quench UFDs. We find that the least-massive MW UFDs (M*(z= 5) ≲ 5 × 104M) are likely quenched by reionization, whereas more-massive M31 UFDs (M*(z= 5) ≳ 105M) may only have their star formation suppressed by reionization and quench at a later time. We discuss these findings in the context of the evolution and quenching of UFDs.

     
    more » « less
  4. Abstract We measure homogeneous distances to M31 and 38 associated stellar systems (−16.8 ≤ M V ≤ −6.0), using time-series observations of RR Lyrae stars taken as part of the Hubble Space Telescope Treasury Survey of M31 Satellites. From >700 orbits of new/archival Advanced Camera for Surveys imaging, we identify >4700 RR Lyrae stars and determine their periods and mean magnitudes to a typical precision of 0.01 day and 0.04 mag. Based on period–Wesenheit–metallicity relationships consistent with the Gaia eDR3 distance scale, we uniformly measure heliocentric and M31-centric distances to a typical precision of ∼20 kpc (3%) and ∼10 kpc (8%), respectively. We revise the 3D structure of the M31 galactic ecosystem and: (i) confirm a highly anisotropic spatial distribution such that ∼80% of M31's satellites reside on the near side of M31; this feature is not easily explained by observational effects; (ii) affirm the thin (rms 7–23 kpc) planar “arc” of satellites that comprises roughly half (15) of the galaxies within 300 kpc from M31; (iii) reassess the physical proximity of notable associations such as the NGC 147/185 pair and M33/AND xxii ; and (iv) illustrate challenges in tip-of-the-red-giant branch distances for galaxies with M V > − 9.5, which can be biased by up to 35%. We emphasize the importance of RR Lyrae for accurate distances to faint galaxies that should be discovered by upcoming facilities (e.g., Rubin Observatory). We provide updated luminosities and sizes for our sample. Our distances will serve as the basis for future investigation of the star formation and orbital histories of the entire known M31 satellite system. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. ABSTRACT Using RR Lyrae stars in the Gaia Data Release 2 and Pan-STARRS1 we study the properties of the Pisces overdensity, a diffuse substructure in the outer halo of the Milky Way. We show that along the line of sight, Pisces appears as a broad and long plume of stars stretching from 40 to 110 kpc with a steep distance gradient. On the sky Pisces’s elongated shape is aligned with the Magellanic Stream. Using follow-up VLT FORS2 spectroscopy, we have measured the velocity distribution of the Pisces candidate member stars and have shown it to be as broad as that of the Galactic halo but offset to negative velocities. Using a suite of numerical simulations, we demonstrate that the structure has many properties in common with the predicted behaviour of the Magellanic wake, i.e. the Galactic halo overdensity induced by the infall of the Magellanic Clouds. 
    more » « less