- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
30
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Debnath, Dipsikha (3)
-
Gainer, James S. (2)
-
Kilic, Can (2)
-
Kim, Doojin (2)
-
Matchev, Konstantin T. (2)
-
Yang, Yuan-Pao (2)
-
Butter, Anja (1)
-
Cranmer, Kyle (1)
-
Dillon, Barry M. (1)
-
Fairbairn, Malcolm (1)
-
Faroughy, Darius A. (1)
-
Fedorko, Wojtek (1)
-
Gay, Christophe (1)
-
Gouskos, Loukas (1)
-
Kamenik, Jernej Fesel (1)
-
Kasieczka, Gregor (1)
-
Komiske, Patrick (1)
-
Leiss, Simon (1)
-
Lister, Alison (1)
-
Macaluso, Sebastian (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like eventsDebnath, Dipsikha ; Gainer, James S. ; Kilic, Can ; Kim, Doojin ; Matchev, Konstantin T. ; Yang, Yuan-Pao ( , Journal of High Energy Physics)
-
Kasieczka, Gregor ; Plehn, Tilman ; Butter, Anja ; Cranmer, Kyle ; Debnath, Dipsikha ; Dillon, Barry M. ; Fairbairn, Malcolm ; Faroughy, Darius A. ; Fedorko, Wojtek ; Gay, Christophe ; et al ( , SciPost Physics)Based on the established task of identifying boosted, hadronicallydecaying top quarks, we compare a wide range of modern machine learningapproaches. Unlike most established methods they rely on low-levelinput, for instance calorimeter output. While their networkarchitectures are vastly different, their performance is comparativelysimilar. In general, we find that these new approaches are extremelypowerful and great fun.