skip to main content

Search for: All records

Creators/Authors contains: "Decharme, Bertrand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Global estimates of the land carbon sink are often based on simulations by terrestrial biosphere models (TBMs). The use of a large number of models that differ in their underlying hypotheses, structure and parameters is one way to assess the uncertainty in the historical land carbon sink. Here we show that the atmospheric forcing datasets used to drive these TBMs represent a significant source of uncertainty that is currently not systematically accounted for in land carbon cycle evaluations. We present results from three TBMs each forced with three different historical atmospheric forcing reconstructions over the period 1850–2015. We perform an analysis of variance to quantify the relative uncertainty in carbon fluxes arising from the models themselves, atmospheric forcing, and model-forcing interactions. We find that atmospheric forcing in this set of simulations plays a dominant role on uncertainties in global gross primary productivity (GPP) (75% of variability) and autotrophic respiration (90%), and a significant but reduced role on net primary productivity and heterotrophic respiration (30%). Atmospheric forcing is the dominant driver (52%) of variability for the net ecosystem exchange flux, defined as the difference between GPP and respiration (both autotrophic and heterotrophic respiration). In contrast, for wildfire-driven carbon emissions modelmore »uncertainties dominate and, as a result, model uncertainties dominate for net ecosystem productivity. At regional scales, the contribution of atmospheric forcing to uncertainty shows a very heterogeneous pattern and is smaller on average than at the global scale. We find that this difference in the relative importance of forcing uncertainty between global and regional scales is related to large differences in regional model flux estimates, which partially offset each other when integrated globally, while the flux differences driven by forcing are mainly consistent across the world and therefore add up to a larger fractional contribution to global uncertainty.

    « less
  2. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate is critical to better understand the global carboncycle, support the development of climate policies, and project futureclimate change. Here we describe and synthesize datasets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFOS) are based on energystatistics and cement production data, while emissions from land-use change(ELUC), mainly deforestation, are based on land use and land-use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly, and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN) is estimatedwith global ocean biogeochemistry models and observation-baseddata products. The terrestrial CO2 sink (SLAND) is estimated withdynamic global vegetation models. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the firsttime, an approach is shown to reconcile the difference in our ELUCestimate with the one from national greenhouse gas inventories, supportingthe assessment of collective countries' climate progress. Formore »the year 2020, EFOS declined by 5.4 % relative to 2019, withfossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLANDwas 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. Theglobal atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOSrelative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budgetare consistently estimated over the period 1959–2020, but discrepancies ofup to 1 GtC yr−1 persist for the representation of annual tosemi-decadal variability in CO2 fluxes. Comparison of estimates frommultiple approaches and observations shows (1) a persistent largeuncertainty in the estimate of land-use changes emissions, (2) a lowagreement between the different methods on the magnitude of the landCO2 flux in the northern extra-tropics, and (3) a discrepancy betweenthe different methods on the strength of the ocean sink over the lastdecade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understandingof the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; LeQuéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). Thedata presented in this work are available at (Friedlingstein et al., 2021).« less