The
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract J = 5.5 → 4.5 andJ = 5 → 4 transitions of PO and PN, respectively, have been imaged in the envelope of hypergiant star VY Canis Majoris (VY CMa) using the Atacama Large Millimeter/submillimeter Array with angular resolutions of 0.″2 and 1.″5 and data from the Submillimeter Telescope of the Arizona Radio Observatory. These maps are the first high-fidelity images of PO and PN in a circumstellar envelope. Both molecules are primarily present in a spherical, star-centered region with a radius ∼60R *(0.″5), indicating formation by LTE chemistry and then condensation into grains. PN, however, shows additional, fan-shaped emission 2″ southwest of the star, coincident with dust features resolved by Hubble Space Telescope (HST), as well as four newly identified distinct structures 1″–2″ toward the north, east, and west (Cloudlets I–IV), not visible in HST images. The “SW Fan” and the cloudlets are also prominent in theJ = 5.5 → 4.5 transition of NS. The correlation of PN with NS, SiO, and dust knots in the SW Fan suggests a formation in shocked gas enhanced with nitrogen. Excess nitrogen is predicted to favor PN synthesis over PO. Abundances for PN and PO in the spherical source aref ∼ 4.4 × 10−8and 1.4 × 10−7, respectively, relative to H2. Given a cosmic abundance of phosphorus, an unusually high fraction (∼35%) is contained in PO and PN. Alternatively, the stellar winds may be enriched in P (and N) by dredge-up from the interior of VY CMa. -
ABSTRACT We analyse continuum and molecular emission, observed with Atacama Large Millimetre/submillimetre Array, from the dust-enshrouded intermediate-mass asymptotic giant branch (AGB) star OH 30.1−0.7. We find a secondary peak in the continuum maps, ‘feature B’, separated by 4.6 arcsec from the AGB star, which corresponds to a projected separation of $1.8\times 10^{4}$ au, placing a lower limit on the physical separation. This feature is most likely composed of cold dust and is likely to be ejecta associated with the AGB star, though we cannot rule out that it is a background object. The molecular emission we detect includes lines of CO, SiS, CS, $\mathrm{SO}_2$, NS, NaCl, and KCl. We find that the NS emission is off centre and arranged along an axis perpendicular to the direction of feature B, indicative of a UV-emitting binary companion (e.g. a G-type main sequence star or hotter), perhaps on an eccentric orbit, contributing to its formation. However, the NaCl and KCl emission constrain the nature of that companion to not be hotter than a late B-type main-sequence star. We find relatively warm emission arising from the inner wind and detect several vibrationally excited lines of SiS ($\upsilon =1$), NaCl (up to $\upsilon =4$), and KCl (up to $\upsilon =2$), and emission from low-energy levels in the mid to outer envelope, as traced by $\mathrm{SO}_2$. The CO emission is abruptly truncated around 3.5 arcsec or 14 000 au from the continuum peak, suggesting that mass loss at a high rate may have commenced as little as 2800 yr ago.
-
Abstract The red hypergiant VY CMa is famous for its very visible record of high-mass-loss events. Recent CO observations with the Atacama Large Millimeter/submillimeter Array (ALMA) revealed three previously unknown large-scale outflows (Singh et al). In this paper, we use the CO maps to investigate the motions of a cluster of four clumps close to the star, not visible in the optical or infrared images. We present their proper motions measured from two epochs of ALMA images and determine the line-of-sight velocities of the gas in emission at the clumps. We estimate their masses and ages, or time since ejection, and conclude that all four were ejected during VY CMa’s active period in the early 20th century. Together with two additional knots observed with the Hubble Space Telescope, VY CMa experienced at least six massive outflows during a 30 yr period, with a total mass lost ≥0.07
M ⊙. The position–velocity map of the12CO emission reveals previously unnoticed attributes of the older outer ejecta. In a very narrow range of Doppler velocities,12CO absorption and emission causes some of this outer material to be quite opaque. At those frequencies the inner structure is hidden and we see only emission from an extended outer region. This fact produces a conspicuous but illusory dark spot if one attempts to subtract the continuum in a normal way. -
Abstract The
J = 2 → 1 transition of CO near 230 GHz and theJ = 3 → 2 line of HCN at 265 GHz have been imaged in the envelope of the red hypergiant star, VY Canis Majoris (VY CMa), using the Atacama Large Millimeter Array (ALMA) with angular resolutions 0.″2–1.″5; single-dish data were added to provide sensitivity up to 30″. These images reveal a far more complex envelope, with previously unseen outflows extending 4″–9″ from the star. These new structures include an arc-like outflow with an angular separation of ∼9″ northeast from the stellar position (“NE Arc”), twin fingerlike features approximately 4″ to the north/northeast (“NE Extension”), and a roughly spherical region observed ∼7″ E of the star (“E Bubble”). The NE Arc appears to be decelerating from base (V LSR∼ 7 km s−1) to tip (V LSR∼ 18 km s−1), while the NE Extension is blueshifted withV LSR∼ −7 km s−1. Among the new features, HCN is only detected in the NE Arc. In addition, known structures Arc 1, Arc 2, and NW Arc, as well as other features closer to the star, are closely replicated in CO, suggesting that the gas and dust are well mixed. The CO spectra are consistent with the kinematic picture of VY CMa derived from HST data. Arc 2, however, has added complexity. Preliminary results from CO suggest12C/13C ∼ 22–38 across the envelope. The additional presence of at least three major episodic mass ejection events significantly broadens the current perspective of the envelope structure and mass-loss history of VY CMa. -
Abstract Transmission spectroscopy1–3of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations’ relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species—in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5–5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec’s PRISM mode9as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10–12. We robustly detect several chemical species at high significance, including Na (19
σ ), H2O (33σ ), CO2(28σ ) and CO (7σ ). The non-detection of CH4, combined with a strong CO2feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2(2.7σ ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST’s sensitivity to a rich diversity of exoplanet compositions and chemical processes. -
Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.