Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes.more » « less
-
ABSTRACT Samples of young Type Ia supernovae have shown ‘early excess’ emission in a few cases. Similar excesses are predicted by some explosion and progenitor scenarios and hence can provide important clues regarding the origin of thermonuclear supernovae. They are, however, only predicted to last up to the first few days following explosion. It is therefore unclear whether such scenarios are intrinsically rare or whether the relatively small sample size simply reflects the difficulty in obtaining sufficiently early detections. To that end, we perform toy simulations covering a range of survey depths and cadences, and investigate the efficiency with which young Type Ia supernovae are recovered. As input for our simulations, we use models that broadly cover the range of predicted luminosities. Based on our simulations, we find that in a typical 3 d cadence survey, only ∼10 per cent of Type Ia supernovae would be detected early enough to rule out the presence of an excess. A 2 d cadence, however, should see this increase to ∼15 per cent. We find comparable results from more detailed simulations of the Zwicky Transient Facility surveys. Using the recovery efficiencies from these detailed simulations, we investigate the number of young Type Ia supernovae expected to be discovered assuming some fraction of the population comes from scenarios producing an excess at early times. Comparing the results of our simulations to observations, we find that the intrinsic fraction of Type Ia supernovae with early flux excesses is $$\sim 28^{+13}_{-11}{{\ \rm per\ cent}}$$.more » « less
-
ABSTRACT We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe ii] to [Fe iii] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia.more » « less
An official website of the United States government
