skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Deegbey, Mawuli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+. 
    more » « less