Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Machine learning enabled measurements of astrophysical ( ) reactions with the SECAR recoil separatorThe synthesis of heavy elements in supernovae is affected by low-energy and reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designed to measure astrophysical reactions that change the mass of a nucleus significantly. We used a novel approach that integrates machine learning with ion-optical simulations to find an ion-optical solution for the separator that enables the measurement of reactions, despite the reaction leaving the mass of the nucleus nearly unchanged. A new measurement of the reaction in inverse kinematics with a MeV/nucleon beam (corresponding to MeV proton energy in normal kinematics) yielded a cross-section of mb and served as a proof of principle experiment for the new technique demonstrating its effectiveness in achieving the required performance criteria. This novel approach paves the way for studying astrophysically important reactions on unstable nuclei produced at FRIB. Published by the American Physical Society2025more » « less
-
Abstract The radioisotope 26 Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26 Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch stars; to massive and very massive stars, both their Wolf–Rayet winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26 Al in these astrophysical objects, including (but not limited to) 25 Mg( p , γ ) 26 Al, 26 Al( p , γ ) 27 Si, and 26 Al( n , p / α ). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26 Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work.more » « less
An official website of the United States government
