skip to main content


Search for: All records

Creators/Authors contains: "Dekany, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producingr-process elements. Simulations have shown that 0.01–0.1Mofr-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature ofr-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity ofr-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account forr-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on ther-process mass for these SNe. We also perform independent light curve fits to models without ther-process. We find that ther-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence ofr-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities ofr-process ejecta mass or indicate whether all collapsars are completely devoid ofr-process nucleosynthesis.

     
    more » « less
  2. Abstract While it is difficult to observe the first black hole seeds in the early universe, we can study intermediate-mass black holes (IMBHs) in local dwarf galaxies for clues about their origins. In this paper we present a sample of variability-selected active galactic nuclei (AGN) in dwarf galaxies using optical photometry from the Zwicky Transient Facility (ZTF) and forward-modeled mid-IR photometry of time-resolved Wide-field Infrared Survey Explorer (WISE) co-added images. We found that 44 out of 25,714 dwarf galaxies had optically variable AGN candidates and 148 out of 79,879 dwarf galaxies had mid-IR variable AGN candidates, corresponding to active fractions of 0.17% ± 0.03% and 0.19% ± 0.02%, respectively. We found that spectroscopic approaches to AGN identification would have missed 81% of our ZTF IMBH candidates and 69% of our WISE IMBH candidates. Only nine candidates have been detected previously in radio, X-ray, and variability searches for dwarf galaxy AGN. The ZTF and WISE dwarf galaxy AGN with broad Balmer lines have virial masses of 10 5 M ⊙ < M BH < 10 7 M ⊙ , but for the rest of the sample, BH masses predicted from host galaxy mass range between 10 5.2 M ⊙ < M BH < 10 7.25 M ⊙ . We found that only 5 of 152 previously reported variability-selected AGN candidates from the Palomar Transient Factory in common with our parent sample were variable in ZTF. We also determined a nuclear supernova fraction of 0.05% ± 0.01% yr −1 for dwarf galaxies in ZTF. Our ZTF and WISE IMBH candidates show the promise of variability searches for the discovery of otherwise hidden low-mass AGN. 
    more » « less
  3. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.

     
    more » « less
  4. Abstract

    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (Teff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σsignificance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withLX∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.

     
    more » « less
  5. Abstract Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era. 
    more » « less
  6. Abstract

    We report on the discovery by the Zwicky Transient Facility of an asteroid orbiting entirely within the orbit of Venus, the first known example of this orbital class. The asteroid's perihelion is closer to the Sun than the aphelion of Mercury, and its diameter is estimated at about 1.8 km assuming an albedo of 0.2. The object was first observed on 2020 January 4 in four exposures obtained 7 minutes apart during an evening twilight survey. Its IAU-recognized designation is 594913 ‘Ayló’chaxnim.

     
    more » « less
  7. Abstract The current Cepheid-calibrated distance ladder measurement of H 0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H 0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H 0 = 76.94 ± 6.4 km s −1 Mpc −1 , an 8.3% measurement. The error budget is dominated by the single object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia. 
    more » « less
  8. Abstract

    Based on time-series observations collected from the Zwicky Transient Facility (ZTF), we derived period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations for RR Lyrae located in globular clusters. We have applied various selection criteria to exclude RR Lyrae with problematic or spurious light curves. These selection criteria utilized information on the number of data points per light curve, amplitudes, colors, and residuals on the period–luminosity and/or period–Wesenheit relations. Due to blending, a number of RR Lyrae in globular clusters were found to be anomalously bright and have small amplitudes of their ZTF light curves. We used our final sample of ∼750 RR Lyrae in 46 globular clusters covering a wide metallicity range (−2.36 dex < [Fe/H] < −0.54 dex) to derive PLZ and PWZ relations in thegribands. In addition, we have also derived the period–color–metallicity and, for the first time, the period-Q-index-metallicity relations, where theQ-index is extinction-free by construction. We have compared our various relations to empirical and theoretical relations available in the literature and found a good agreement with most studies. Finally, we applied our derived PLZ relation to a dwarf galaxy, Crater II, and found that its true distance modulus should be larger than the most recent determination.

     
    more » « less
  9. Abstract

    There is a growing concern about an impact of low-Earth-orbit (LEO) satellite constellations on ground-based astronomical observations, in particular, on wide-field surveys in the optical and infrared. The Zwicky Transient Facility (ZTF), thanks to the large field of view of its camera, provides an ideal setup to study the effects of LEO megaconstellations—such as SpaceX’s Starlink—on astronomical surveys. Here, we analyze the archival ZTF observations collected between 2019 November and 2021 September and find 5301 satellite streaks that can be attributed to Starlink satellites. We find that the number of affected images is increasing with time as SpaceX deploys more satellites. Twilight observations are particularly affected—a fraction of streaked images taken during twilight has increased from less than 0.5% in late 2019 to 18% in 2021 August. We estimate that once the size of the Starlink constellation reaches 10,000, essentially all ZTF images taken during twilight may be affected. However, despite the increase in satellite streaks observed during the analyzed period, the current science operations of ZTF are not yet strongly affected. We also find that redesigning Starlink satellites (by installing visors intended to block sunlight from reaching the satellite antennas to prevent reflection) reduces their brightness by a factor of 4.6 ± 0.1 with respect to the original design ing,r, andibands.

     
    more » « less