Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
van_der_Meer, Jan Roelof (Ed.)SUMMARY Engineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measuresin situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.more » « lessFree, publicly-accessible full text available June 25, 2026
-
Plant-microbe interactions are critical to ecosystem resilience and substantially influence crop production. From the perspective of plant science, two important focus areas concerning plant-microbe interactions include: 1) understanding plant molecular mechanisms involved in plant-microbe interfaces and 2) engineering plants for increasing plant disease resistance or enhancing beneficial interactions with microbes to increase their resilience to biotic and abiotic stress conditions. Molecular biology and genetics approaches have been used to investigate the molecular mechanisms underlying plant responses to various beneficial and pathogenic microbes. While these approaches are valuable for elucidating the functions of individual genes and pathways, they fall short of unraveling the complex cross-talk across pathways or systems that plants employ to respond and adapt to environmental stresses. Also, genetic engineering of plants to increase disease resistance or enhance symbiosis with microbes has mainly been attempted or conducted through targeted manipulation of single genes/pathways of plants. Recent advancements in synthetic biology tool development are paving the way for multi-gene characterization and engineering in plants in relation to plant-microbe interactions. Here, we briefly summarize the current understanding of plant molecular pathways involved in plant interactions with beneficial and pathogenic microorganisms. Then, we highlight the progress in applying plant synthetic biology to elucidate the molecular basis of plant responses to microbes, enhance plant disease resistance, engineer synthetic symbiosis, and conduct in situ microbiome engineering. Lastly, we discuss the challenges, opportunities, and future directions for advancing plant-microbe interactions research using the capabilities of plant synthetic biology.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
