Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Objective: Although extensive insights about the neural mechanisms of reading have been gained via magnetic and electrographic imaging, the temporal evolution of the brain network during sight reading remains unclear. We tested whether the temporal dynamics of the brain functional connectivity involved in sight reading can be tracked using high-density scalp EEG recordings. Approach: Twenty-eight healthy subjects were asked to read words in a rapid serial visual presentation task while recording scalp EEG, and phase locking value was used to estimate the functional connectivity between EEG channels in the theta, alpha, beta, and gamma frequency bands. The resultant networks were then tracked through time. Main results: The network's graph density gradually increases as the task unfolds, peaks 150-250-ms after the appearance of each word, and returns to resting-state values, while the shortest path length between non-adjacent functional areas decreases as the density increases, thus indicating that a progressive integration between regions can be detected at the scalp level. This pattern was independent of the word's type or position in the sentence, occurred in the theta/alpha band but not in beta/gamma band, and peaked earlier in the alpha band compared to the theta band (alpha: 184 +/- 61.48-ms; theta: 237 +/- 65.32-ms, P-value P < 0.01). Nodes in occipital and frontal regions had the highest eigenvector centrality throughout the word's presentation, and no significant lead-lag relationship between frontal/occipital regions and parietal/temporal regions was found, which indicates a consistent pattern in information flow. In the source space, this pattern was driven by a cluster of nodes linked to sensorimotor processing, memory, and semantic integration, with the most central regions being similar across subjects. Significance: These findings indicate that the brain network connectivity can be tracked via scalp EEG as reading unfolds, and EEG-retrieved networks follow highly repetitive patterns lateralized to frontal/occipital areas during reading.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Objective: Although extensive insights about the neural mechanisms of reading have been gained via magnetic and electrographic imaging, the temporal evolution of the brain network during sight reading remains unclear. We tested whether the temporal dynamics of the brain functional connectivity involved in sight reading can be tracked using high-density scalp EEG recordings. Approach: Twenty-eight healthy subjects were asked to read words in rapid serial visual presentation task while recording scalp EEG, and phase locking value was used to estimate the functional connectivity between EEG channels in the theta, alpha, beta, and gamma frequency bands. The resultant networks were then tracked through time. Main results: The network's graph density gradually increases as the task unfolds, peaks 150-250-ms after the appearance of each word, and returns to resting-state values, while the shortest path length between non-adjacent functional areas decreases as the density increases, thus indicating that a progressive integration between regions can be detected at the scalp level. This pattern was independent of the word's type or position in the sentence, occurred in the theta/alpha band but not in beta/gamma range, and peaked earlier in the alpha band compared to the theta band (alpha: 184 ± 61.48-ms; theta: 237 ± 65.32-ms, P-value P<0.01). Nodes in occipital and frontal regions had the highest eigenvector centrality throughout the word's presentation, and no significant lead-lag relationship between frontal/occipital regions and parietal/temporal regions was found, which indicates a consistent pattern in information flow. In the source space, this pattern was driven by a cluster of nodes linked to sensorimotor processing, memory, and semantic integration, with the most central regions being similar across subjects. Significance: These findings indicate that the brain network connectivity can be tracked via scalp EEG as reading unfolds, and EEG-retrieved networks follow highly repetitive patterns lateralized to frontal/occipital areas during reading.more » « lessFree, publicly-accessible full text available March 12, 2026
-
Brain Connectivity (BC) features of multichannel EEG have been proposed for Motor Imagery (MI) decoding in Brain-Computer Interface applications, but the advantages of BC features vs. single-channel features are unclear. Here, we consider three BC features, i.e., Phase Locking Value (PLV), Granger Causality, and weighted Phase Lag Index, and investigate the relationship between the most central nodes in BC-based networks and the most influential EEG channels in single-channel classification based on common spatial pattern filtering. Then, we compare the accuracy of MI decoders that use BC features in source vs. sensor space. Applied to the BCI Competition VI Dataset 2a (left- vs. right-hand MI decoding), our study found that PLV in sensor space achieves the highest classification accuracy among BC features and has similar performance compared to single-channel features, while the transition from sensor to source space reduces the average accuracy of BC features. Across all BC measures, the network topology is similar in left- vs. right-hand MI tasks, and the most central nodes in BC-based networks rarely overlap with the most influential channels in single-channel classification.more » « less
An official website of the United States government
