Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Galaxy formation models within cosmological hydrodynamical simulations contain numerous parameters with nontrivial influences over the resulting properties of simulated cosmic structures and galaxy populations. It is computationally challenging to sample these high dimensional parameter spaces with simulations, in particular for halos in the high-mass end of the mass function. In this work, we develop a novel sampling and reduced variance regression method,CARPoolGP, which leverages built-in correlations between samples in different locations of high dimensional parameter spaces to provide an efficient way to explore parameter space and generate low-variance emulations of summary statistics. We use this method to extend the Cosmology and Astrophysics with machinE Learning Simulations to include a set of 768 zoom-in simulations of halos in the mass range of 1013–1014.5M⊙h−1that span a 28-dimensional parameter space in the IllustrisTNG model. With these simulations and the CARPoolGP emulation method, we explore parameter trends in the ComptonY–M, black hole mass–halo mass, and metallicity–mass relations, as well as thermodynamic profiles and quenched fractions of satellite galaxies. We use these emulations to provide a physical picture of the complex interplay between supernova and active galactic nuclei feedback. We then use emulations of theY–Mrelation of massive halos to perform Fisher forecasts on astrophysical parameters for future Sunyaev–Zeldovich observations and find a significant improvement in forecasted constraints. We publicly release both the simulation suite and CARPoolGP software package.more » « less
-
ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$.more » « less
-
ABSTRACT Feedback from active galactic nuclei and stellar processes changes the matter distribution on small scales, leading to significant systematic uncertainty in weak lensing constraints on cosmology. We investigate how the observable properties of group-scale haloes can constrain feedback’s impact on the matter distribution using Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). Extending the results of previous work to smaller halo masses and higher wavenumber, k, we find that the baryon fraction in haloes contains significant information about the impact of feedback on the matter power spectrum. We explore how the thermal Sunyaev Zel’dovich (tSZ) signal from group-scale haloes contains similar information. Using recent Dark Energy Survey weak lensing and Atacama Cosmology Telescope tSZ cross-correlation measurements and models trained on CAMELS, we obtain 10 per cent constraints on feedback effects on the power spectrum at $$k \sim 5\, h\, {\rm Mpc}^{-1}$$. We show that with future surveys, it will be possible to constrain baryonic effects on the power spectrum to $$\mathcal {O}(\lt 1~{{\ \rm per\ cent}})$$ at $$k = 1\, h\, {\rm Mpc}^{-1}$$ and $$\mathcal {O}(3~{{\ \rm per\ cent}})$$ at $$k = 5\, h\, {\rm Mpc}^{-1}$$ using the methods that we introduce here. Finally, we investigate the impact of feedback on the matter bispectrum, finding that tSZ observables are highly informative in this case.more » « less
An official website of the United States government
