skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Demkowicz, Leszek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of exp(-ikz) with a user-defined wavenumber k, where z is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the z-direction than the original field, so that it can be more efficiently discretized and computed, enabling solutions to the vectorial DPG Maxwell system in fibers that are 1000x longer than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. The discontinuous Petrov–Galerkin (DPG) method is a Petrov–Galerkin finite element method with test functions designed for obtaining stability. These test functions are computable locally, element by element, and are motivated by optimal test functions which attain the supremum in an inf-sup condition. A profound consequence of the use of nearly optimal test functions is that the DPG method can inherit the stability of the (undiscretized) variational formulation, be it coercive or not. This paper combines a presentation of the fundamentals of the DPG ideas with a review of the ongoing research on theory and applications of the DPG methodology. The scope of the presented theory is restricted to linear problems on Hilbert spaces, but pointers to extensions are provided. Multiple viewpoints to the basic theory are provided. They show that the DPG method is equivalent to a method which minimizes a residual in a dual norm, as well as to a mixed method where one solution component is an approximate error representation function. Being a residual minimization method, the DPG method yields Hermitian positive definite stiffness matrix systems even for non-self-adjoint boundary value problems. Having a built-in error representation, the method has the out-of-the-box feature that it can immediately be used in automatic adaptive algorithms. Contrary to standard Galerkin methods, which are uninformed about test and trial norms, the DPG method must be equipped with a concrete test norm which enters the computations. Of particular interest are variational formulations in which one can tailor the norm to obtain robust stability. Key techniques to rigorously prove convergence of DPG schemes, including construction of Fortin operators, which in the DPG case can be done element by element, are discussed in detail. Pointers to open frontiers are presented. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. In a time-harmonic setting, we show for heterogeneous acoustic and homogeneous electromagnetic wavesguides stability estimates with the stability constant depending linearly on the length L of the waveguide. These stability estimates are used for the analysis of the (ideal) ultraweak (UW) variant of the discontinuous Petrov--Galerkin (DPG) method. For this UW DPG, we show that the stability deterioration with L can be countered by suitably scaling the test norm of the method. We present the "full envelope approximation," a UW DPG method based on nonpolynomial ansatz functions that allows for treating long waveguides. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  4. In this article, we present a three-dimensional anisotropic hp-mesh refinement strategy for ultraweak discontinuous Petrov-Galerkin (DPG) formulations with optimal test functions. The refinement strategy utilizes the built-in residual-based error estimator accompanying the DPG discretization. The refinement strategy is a two-step process: (a) use the built-in error estimator to mark and isotropically hp-refine elements of the (coarse) mesh to generate a finer mesh; (b) use the reference solution on the finer mesh to compute optimal ℎ-and 𝑝-refinements of the selected elements in the coarse mesh. The process is repeated with coarse and fine mesh being generated in every adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate the performance of the proposed refinement strategy using several numerical examples on hexahedral meshes. 
    more » « less
  5. This paper is a continuation of Melenk et al., "Stability analysis for electromagnetic waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides" (2023), extending the stability results for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case. The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveguide problem is well-posed with the stability constant scaling linearly with waveguide length L. The results provide a basis for proving convergence of a Discontinuous Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultraweak variational formulation for the resulting modified system of Maxwell equations, see Part 1. 
    more » « less
  6. This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12–26) and extends the convergence results from O(10^7) degrees of freedom (DOFs) to O(10^9) DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating ℎand 𝑝robust convergence and linear scaling with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast. 
    more » « less
  7. null (Ed.)