skip to main content

Search for: All records

Creators/Authors contains: "Dempsey, C. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Improving materials used to make qubits is crucial to further progress in quantum information processing. Of particular interest are semiconductor-superconductor heterostructures that are expected to form the basis of topological quantum computing. We grew semiconductor indium antimonide nanowires that were coated with shells of tin of uniform thickness. No interdiffusion was observed at the interface between Sn and InSb. Tunnel junctions were prepared by in situ shadowing. Despite the lack of lattice matching between Sn and InSb, a 15-nanometer-thick shell of tin was found to induce a hard superconducting gap, with superconductivity persisting in magnetic field up to 4 teslas. A small island of Sn-InSb exhibits the two-electron charging effect. These findings suggest a less restrictive approach to fabricating superconducting and topological quantum circuits.