skip to main content


Search for: All records

Creators/Authors contains: "DenBaars, Steven P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The V-defect is a naturally occurring inverted hexagonal pyramid structure that has been studied in GaN and InGaN growth since the 1990s. Strategic use of V-defects in pre-quantum well superlattices or equivalent preparation layers has enabled record breaking efficiencies for green, yellow, and red InGaN light emitting diodes (LEDs) utilizing lateral injection of holes through the semi-polar sidewalls of the V-defects. In this article, we use advanced characterization techniques such as scattering contrast transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy, x-ray fluorescence maps, and atom probe tomography to study the active region compositions, V-defect formation, and V-defect structure in green and red LEDs grown on (0001) patterned sapphire and (111) Si substrates. We identify two distinct types of V-defects. The “large” V-defects are those that form in the pre-well superlattice and promote hole injection, usually nucleating on mixed (Burgers vector b=±a±c) character threading dislocations. In addition, “small” V-defects often form in the multi-quantum well region and are believed to be deleterious to high-efficiency LEDs by providing non-radiative pathways. The small V-defects are often associated with basal plane stacking faults or stacking fault boxes. Furthermore, we show through scattering contrast transmission electron microscopy that during V-defect filling, the threading dislocation, which runs up the center of the V-defect, will “bend” onto one of the six {101¯1} semi-polar planes. This result is essential to understanding non-radiative recombination in V-defect engineered LEDs.

     
    more » « less
  2. Abstract

    Metasurface‐based optical elements offer a wide design space for miniature and lightweight optical applications. Typically, metasurface optical elements transform an incident light beam into a desired output waveform. Recent demonstrations of light‐emitting metasurfaces highlight the potential for directly producing desired output waveforms via metasurface‐mediated spontaneous emission. In this work, reciprocal finite‐difference time‐domain (FDTD) simulations and machine learning are used to enable the inverse design of highly unidirectional photoluminescent III‐Nitride quantum well metasurfaces capable of directivep‐,s‐, or combinedp‐ ands‐ polarized emission at arbitrary angles. In comparison with previous intuition‐guided designs using the same quantum well architectures, the inverse design approach enables new polarization capabilities and experimentally demonstrated improvements in directivity of 54%. An analysis of ways in which the inverse design both validates and contradicts previous intuition‐guided design heuristics is presented. Ultimately, the combination of reciprocal simulations and efficient global optimization (EGO) grants remarkable improvements in emission directivity and results in full control over the polarization and momentum of emitted light, including simultaneous directional emission ofs‐ andp‐polarized light.

     
    more » « less
  3. null (Ed.)