skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, a broadband achromatic focusing metasurface design scheme based on the equivalent circuit theory and optimized by a deep learning method is proposed. The designed metasurface element consists of multilayer metal rings and a grounding layer, and the phase modulation effect of achromatic aberration in a wide frequency range is realized by precisely controlling the distance between the layers. The preparation of this complex structure is realized by using additive manufacturing technology, which effectively overcomes the limitations of traditional printed circuit board technology in manufacturing complex structures. To further improve the design efficiency, deep conditional generative adversarial network is introduced in this paper to quickly determine the structural parameters and realize the inverse design, which significantly improves the efficiency and accuracy of the metasurface structure design. The experimental results show that the metasurface possesses good focusing performance in the 17 to 35 GHz band with an effective bandwidth utilization of 69.2 %. The design method proposed in this study combines artificial intelligence and additive manufacturing technology, which provides new design ideas for applications in the fields of communication, optics and wireless energy transmission. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  2. Objectives: Diarrheal disease continues to be a significant cause of morbidity and mortality. We investigated how anomalies in monthly average temperature, precipitation, and surface water storage (SWS) impacted bacterial, and viral diarrhea morbidity in Taiwan between 2004 and 2015. Methods: A multivariate analysis using negative binomial generalized estimating equations was employed to quantify age- and cause-specific cases of diarrhea associated with anomalies in temperature, precipitation, and SWS. Results: Temperature anomalies were associated with an elevated rate of all-cause infectious diarrhea at a lag of 2 months, with the highest risk observed in the under-5 age group (incidence rate ratio [IRR]=1.03, 95% CI, 1.01-1.07). Anomalies in SWS were associated with increased viral diarrhea rates, with the highest risk observed in the under-5 age group at a 2-month lag (IRR= 1.27; 95% CI: 1.14, 1.42) and a lesser effect at a 1-month lag (IRR=1.18; 95% CI, 1.06-1.31). Furthermore, cause-specific diarrheal diseases were significantly affected by extreme weather events in Taiwan. Both extremely cold and hot conditions were associated with an increased risk of all-cause infectious diarrhea regardless of age, with IRRs ranging from 1.03 (95% CI, 1.02-1.12) to 1.18 (95% CI, 1.16-1.40).Conclusions: The risk of all-cause infectious diarrhea was significantly associated with average temperature anomalies in the population aged under 5 years. Viral diarrhea was significantly associated with anomalies in SWS. Therefore, we recommend strategic planning and early warning systems as major solutions to improve resilience against climate change. 
    more » « less