- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bailis, Peter (1)
-
Derhacobian, Alex (1)
-
Fukami, Tadashi (1)
-
Hashimoto, Tatsunori (1)
-
Hebert, Trevor (1)
-
Kang, Daniel (1)
-
Sun, Yi (1)
-
Tsuji, Kaoru (1)
-
Zaharia, Matei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A common problem practitioners face is to select rare events in a large dataset. Unfortunately, standard techniques ranging from pre-trained models to active learning do not leverage proximity structure present in many datasets and can lead to worse-than-random results. To address this, we propose EZMODE, an algorithm for iterative selection of rare events in large, unlabeled datasets. EZMODE leverages active learning to iteratively train classifiers, but chooses the easiest positive examples to label in contrast to standard uncertainty techniques. EZMODE also leverages proximity structure (e.g., temporal sampling) to find difficult positive examples. We show that EZMODE can outperform baselines by up to 130× on a novel, real-world, 9,000 GB video dataset.more » « less