skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Desai, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The drag coefficient, Stanton number and Dalton number are of particular importance for estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization. Although these bulk transfer coefficients have been extensively studied over the past several decades in marine and large‐lake environments, there are no studies analyzing their variability for smaller lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy‐covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds (<3 m s−1), which was found to be associated with the presence of gusts and capillary waves (except Dalton number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values of 1.6·10−3, 1.4·10−3, 1.0·10−3, respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave roughness while Dalton number could be considered as constant at all wind speeds.

     
    more » « less
  2. Abstract

    While a stimulating effect of plant primary productivity on soil carbon dioxide (CO2) emissions has been well documented, links between gross primary productivity (GPP) and wetland methane (CH4) emissions are less well investigated. Determination of the influence of primary productivity on wetland CH4emissions (FCH4) is complicated by confounding influences of water table level and temperature on CH4production, which also vary seasonally. Here, we evaluate the link between preceding GPP and subsequent FCH4at two fens in Wisconsin using eddy covariance flux towers, Lost Creek (US‐Los) and Allequash Creek (US‐ALQ). Both wetlands are mosaics of forested and shrub wetlands, with US‐Los being larger in scale and having a more open canopy. Co‐located sites with multi‐year observations of flux, hydrology, and meteorology provide an opportunity to measure and compare lag effects on FCH4without interference due to differing climate. Daily average FCH4from US‐Los reached a maximum of 47.7 ηmol CH4m−2 s−1during the study period, while US‐ALQ was more than double at 117.9 ηmol CH4 m−2 s−1. The lagged influence of GPP on temperature‐normalized FCH4(Tair‐FCH4) was weaker and more delayed in a year with anomalously high precipitation than a following drier year at both sites. FCH4at US‐ALQ was lower coincident with higher stream discharge in the wet year (2019), potentially due to soil gas flushing during high precipitation events and lower water temperatures. Better understanding of the lagged influence of GPP on FCH4due to this study has implications for climate modeling and more accurate carbon budgeting.

     
    more » « less
  3. Abstract

    In limnological studies of temperate lakes, most studies of carbon dioxide (CO2) and methane (CH4) emissions have focused on summer measurements of gas fluxes despite the importance of shoulder seasons to annual emissions. This is especially pertinent to dimictic, small lakes that maintain anoxic conditions and turnover quickly in the spring and fall. We examined CO2and CH4dynamics from January to October 2020 in a small humic lake in northern Wisconsin, United States through a combination of discrete sampling and high frequency buoy and eddy covariance data collection. Eddy covariance flux towers were installed on buoys at the center of the lake while it was still frozen to continually measure CO2and CH4across seasons. Despite evidence for only partial turnover during the spring, there was still a notable 19‐day pulse of CH4emissions after lake ice melted with an average daytime flux rate of 8–30 nmol CH4m−2s−1. Our estimate of CH4emissions during the spring pulse was 16 mmol CH4m−2compared to 22 mmol CH4m−2during the stratified period from June to August. We did not observe a linear accumulation of gases under‐ice in our sampling period during the late winter, suggesting the complexity of this dynamic period and the emphasis for direct measurements throughout the ice‐covered period. The results of our study help to better understand the magnitude and timing of greenhouse gas emissions in a region expected to experience warmer winters with decreased ice duration.

     
    more » « less
  4. Abstract

    Neutrino flares in the sky are searched for in data collected by IceCube between 2011 and 2021 May. This data set contains cascade-like events originating from charged-current electron neutrino and tau neutrino interactions and all-flavor neutral-current interactions. IceCube’s previous all-sky searches for neutrino flares used data sets consisting of track-like events originating from charged-current muon neutrino interactions. The cascade data set is statistically independent of the track data sets, and while inferior in angular resolution, the low-background nature makes it competitive and complementary to previous searches. No statistically significant flare of neutrino emission was observed in an all-sky scan. Upper limits are calculated on neutrino flares of varying duration from 1 hr to 100 days. Furthermore, constraints on the contribution of these flares to the diffuse astrophysical neutrino flux are presented, showing that multiple unresolved transient sources may contribute to the diffuse astrophysical neutrino flux.

     
    more » « less
  5. Abstract

    IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events’ error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3σ, which confirms previous IceCube studies. When correcting for 122 test positions, the globalp-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 × 10−15(TeV cm2s)−1at 90% confidence assuming anE−2spectrum. This corresponds to 4.5% of IceCube’s astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.

     
    more » « less
  6. The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales? 
    more » « less