skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deshpande, Kshitija B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electron density irregularities in the ionosphere modify the phase and amplitude of trans-ionospheric radio signals. We aim to characterize the spectral and morphological features of E- and F-region ionospheric irregularities likely to produce these fluctuations or “scintillations”. To characterize them, we use a three-dimensional radio wave propagation model—“Satellite-beacon Ionospheric scintillation Global Model of upper Atmosphere” (SIGMA), along with the scintillation measurements observed by a cluster of six Global Positioning System (GPS) receivers called Scintillation Auroral GPS Array (SAGA) at Poker Flat, AK. An inverse method is used to derive the parameters that describe the irregularities by estimating the best fit of model outputs to GPS observations. We analyze in detail one E-region and two F-region events during geomagnetically active times and determine the E- and F-region irregularity characteristics using two different spectral models as input to SIGMA. Our results from the spectral analysis show that the E-region irregularities are more elongated along the magnetic field lines with rod-shaped structures, while the F-region irregularities have wing-like structures with irregularities extending both along and across the magnetic field lines. We also found that the spectral index of the E-region event is less than the spectral index of the F-region events. Additionally, the spectral slope on the ground at higher frequencies is less than the spectral slope at irregularity height. This study describes distinctive morphological and spectral features of irregularities at E- and F-regions for a handful of cases performed using a full 3D propagation model coupled with GPS observations and inversion. 
    more » « less
  2. Small-scale ionospheric plasma structures can cause scintillation in radio signals passing through the ionosphere. The relationship between the scintillated signal and how plasma structuring develops is complex. We model the development of small-scale plasma structuring in and around an idealized polar cap patch observed by the Resolute Bay Incoherent Scatter Radars (RISR) with the Geospace Environment Model for Ion-Neutral Interactions (GEMINI). Then, we simulate a signal passing through the resulting small-scale structuring with the Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) to predict the scintillation characteristics that will be observed by a ground receiver at different stages of instability development. Finally, we compare the predicted signal characteristics with actual observations of scintillation from ground receivers in the vicinity of Resolute Bay. We interpret the results in terms of the nature of the small-scale plasma structuring in the ionosphere and how it impacts signals of different frequencies and attempt to infer information about the ionospheric plasma irregularity spectrum. 
    more » « less