skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Devadason, Jerusha Ashlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent studies have demonstrated that wideband microwave radiometers provide significant potential for profiling important subsurface polar firn characteristics necessary to understand the dynamics of the cryosphere and predict future changes in ice and snow coverage. Different frequencies within the wide spectra of radiometers result in different electromagnetic propagation losses and thus reveal characteristics at different depths in ice and snow. This paper, expanding on those investigations, explores the utilization of the Global Precipitation Measurement (GPM) constellation as a single wideband (6.93 GHz–91.655 GHz) spaceborne radiometer, covering the entire microwave spectrum from C-band to W-band, to profile subsurface properties of the Antarctic firn. Results of the initial analyses over Concordia and Vostok Stations in Antarctica indicate that GPM brightness temperature measurements provide critical information regarding the subsurface temperatures and physical properties of the firn from the surface down to several meters of depth. Considering the high spatiotemporal coverage of polar-orbiting spaceborne radiometers, these results are promising for future continent-level thermal and physical characterization of the Antarctic firn. 
    more » « less