Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of nonthermal electrons, a material’s dominant scattering processes can be revealed. Here, we present a method for extracting the electron-phonon coupling strength in the time domain, using time- and angle-resolved photoemission spectroscopy (TR-ARPES). This method is demonstrated in graphite, where we investigate the dynamics of photoinjected electrons at the
point, detecting quantized energy-loss processes that correspond to the emission of strongly coupled optical phonons. We show that the observed characteristic time scale for spectral weight transfer mediated by phonon-scattering processes allows for the direct quantitative extraction of electron-phonon matrix elements for specific modes.