Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A key strategy for agriculture to adapt to climate change is by switching crops and relocating crop production. We develop an approach to estimate the economic potential of crop reallocation using a Bayesian hierarchical model of yields. We apply the model to six crops in the United States, and show that it outperforms traditional empirical models under cross-validation. The fitted model parameters provide evidence of considerable existing climate adaptation across counties. If crop locations are held constant in the future, total agriculture profits for the six crops will drop by 31% for the temperature patterns of 2070 under RCP 8.5. When crop lands are reallocated to avoid yield decreases and take advantage of yield increases, half of these losses are avoided (16% loss), but 57% of counties are allocated crops different from those currently planted. Our results provide a framework for identifying crop adaptation opportunities, but suggest limits to their potential.
-
Abstract Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climatemore »