skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Devos, Katrien M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here, we describe the sequencing and pseudomolecule level assembly of a vegetatively propagated accession ofP. vaginatum. Phylogenetic analysis based on 6,151 single-copy syntenic orthologues conserved in 6 related grass species places paspalum as an outgroup of the maize-sorghum clade. In parallel metabolic experiments, paspalum, but neither maize nor sorghum, exhibits a significant increase in trehalose when grown under nutrient-deficit conditions. Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, results in autophagy dependent increases in biomass accumulation.

     
    more » « less
  2. Abstract

    As a step towards trait mapping in the halophyte seashore paspalum (Paspalum vaginatumSw.), we developed an F1mapping population from a cross between two genetically diverse and heterozygous accessions, 509022 and HI33. Progeny were genotyped using a genotyping-by-sequencing (GBS) approach and sequence reads were analyzed for single nucleotide polymorphisms (SNPs) using the UGbS-Flex pipeline. More markers were identified that segregated in the maternal parent (HA maps) compared to the paternal parent (AH maps), suggesting that 509022 had overall higher levels of heterozygosity than HI33. We also generated maps that consisted of markers that were heterozygous in both parents (HH maps). The AH, HA and HH maps each comprised more than 1000 markers. Markers formed 10 linkage groups, corresponding to the ten seashore paspalum chromosomes. Comparative analyses showed that each seashore paspalum chromosome was syntenic to and highly colinear with a single sorghum chromosome. Four inversions were identified, two of which were sorghum-specific while the other two were likely specific to seashore paspalum. These high-density maps are the first available genetic maps for seashore paspalum. The maps will provide a valuable tool for plant breeders and others in thePaspalumcommunity to identify traits of interest, including salt tolerance.

     
    more » « less