skip to main content

Search for: All records

Creators/Authors contains: "Dey, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of modern engineers as problem-definer often require collaborating with cross-disciplinary teams of professionals to understand and effectively integrate the role of other disciplines and accelerate innovation. To prepare future engineers for this emerging role, undergraduate engineering students should engage in collaborative and interdisciplinary activities with faculties and students from various disciplines (e.g., engineering and social science). Such cross-disciplinary experiences of undergraduate engineering students are not common in today’s university curriculum. Through a project funded by the division of Engineering Education and Centers (EEC) of the National Science Foundation (NSF), a research team of the West Virginia University developedmore »and offered a Holistic Engineering Project Experience (HEPE) to the engineering students. Holistic engineering is an approach catering to the overall engineering profession, instead of focusing on any distinctive engineering discipline such as electrical, civil, chemical, or mechanical engineering. Holistic Engineering is based upon the fact that the traditional engineering courses do not offer sufficient non-technical skills to the engineering students to work effectively in cross-disciplinary social problems (e.g., development of transportation systems and services). The Holistic Engineering approach enables engineering students to learn non-engineering skills (e.g., strategic communication skills) beyond engineering math and sciences, which play a critical role in solving complex 21st-century engineering problems. The research team offered the HEPE course in Spring 2020 semester, where engineering students collaborated with social science students (i.e., students from economics and strategic communication disciplines) to solve a contemporary, complex, open-ended transportation engineering problem with social consequences. Social science students also received the opportunity to develop a better understanding of technical aspects in science and engineering. The open ended problem presented to the students was to “Restore and Improve Urban Infrastructure” in connection to the future deployment of connected and autonomous vehicles, which is identified as a grand challenge by the National Academy of Engineers (NAE) [1].« less
  2. Although engineering graduates are well prepared in the technical aspects of engineering, it is widely acknowledged that there is a need for a greater understanding of the socio-economic contexts in which they will practice their profession. The National Academy of Engineering (NAE) reinforces the critical role that engineers should play in addressing both problems and opportunities that are technical, social, economic, and political in nature in solving the grand challenges. This paper provides an overview of a nascent effort to address this educational need. Through a National Science Foundation (NSF) funded program, a team of researchers at West Virginia Universitymore »has launched a Holistic Engineering Project Experience (HEPE). This undergraduate course provides the opportunity for engineering students to work with social science students from the fields of economics and strategic communication on complex and open-ended transportation engineering problems. This course involves cross-disciplinary teams working under diverse constraints of real-world social considerations, such as economic impacts, public policy concerns, and public perception and outreach factors, considering the future autonomous transportation systems. The goal of the HEPE platform is for engineering students to have an opportunity to build non-technical—but highly in-demand—professional skills that promote collaboration with others involved in the socio-economic context of engineering matters. Conversely, the HEPE approach provides an opportunity for non-engineering students to become exposed to key concepts and practices in engineering. This paper outlines the initial implementation of the HEPE program, by placing the effort in context of broader trends in education, by outlining the overall purposes of the program, discussing the course design and structure, reviewing the learning experience and outcomes assessment process, and providing preliminary results of a baseline survey that gauges students interests and attitudes towards collaborative and interdisciplinary learning.« less
  3. Holistic engineering is an approach to the engineering profession, rather than an engineering discipline such as civil, electrical, or mechanical engineering. It is inspired by the realization that traditional engineering does not adequately harness professional skills in its problem-solving repertoire. Holistic engineering asks engineers to look outward, beyond the fields of math and science, in search of solutions to entire problems. While engineering graduates are well prepared in the technical aspects of the engineering profession, they lack non-technical professional skills (e.g., strategic communication, social science perspective of engineering problems, and others) that can help them think through diverse social aspectsmore »posed by current complex engineering grand challenges. In this paper, we review the concept and origins of holistic engineering and we present an application of this concept in a Holistic Engineering Project Course (HEPC) developed as part of a National Science Foundation (NSF) grant. HEPC is developed in such a way that engineering students work with social science students on a complex and open-ended engineering grand challenge problem. We hypothesize that such collaborations can significantly improve the professional formation of well-rounded, and effective engineers. The paper also draws lessons learned from the first offering of the course, titled Technology Innovations: Engineering, Economics, and Public Relations, which was offered in the spring semester of 2020 in the Wadsworth Department of Civil and Environmental Engineering in coordination with the John Chambers Department of Economics and the Reed College of Media in West Virginia University.« less