skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dhar, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate ergodicity, chaos, and thermalization for a one-dimensional classical gas of hard rods confined to an external quadratic or quartic trap, which breaks microscopic integrability. To quantify the strength of chaos in this system, we compute its maximal Lyapunov exponent numerically. The approach to thermal equilibrium is studied by considering the time evolution of particle position and velocity distributions and comparing the late-time profiles with the Gibbs state. Remarkably, we find that quadratically trapped hard rods are highly nonergodic and do not resemble a Gibbs state even at extremely long times, despite compelling evidence of chaos for four or more rods. On the other hand, our numerical results reveal that hard rods in a quartic trap exhibit both chaos and thermalization, and equilibrate to a Gibbs state as expected for a nonintegrable many-body system. 
    more » « less