- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Bergman, Michael T (1)
-
Dhoriyani, Jeet (1)
-
Hall, Carol K (1)
-
You, Fengqi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Kavraki, Lydia (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kavraki, Lydia (Ed.)Methods are needed to mitigate microplastic (MP) pollution to minimize their harm to the environment and human health. Given the ability of polypeptides to adsorb strongly to materials of micro- or nanometer size, plastic-binding peptides (PBPs) could help create bio-based tools for detecting, filtering, or degrading MNP pollution. However, the development of such tools is prevented by the lack of PBPs. In this work, we discover and evaluate PBPs for several common plastics by combining biophysical modeling, molecular dynamics (MD), quantum computing, and reinforcement learning. We frame peptide affinity for a given plastic through a Potts model that is a function of the amino acid sequence and then search for the amino acid sequences with the greatest predicted affinity using quantum annealing. We also use proximal policy optimization to find PBPs with a broader range of physicochemical properties, such as isoelectric point or solubility. Evaluation of the discovered PBPs in MD simulations demonstrates that the peptides have high affinity for two of the plastics: polyethylene and polypropylene. We conclude by describing how our computational approach could be paired with experimental approaches to create a nexus for designing and optimizing peptide-based tools that aid the detection, capture, or biodegradation of MPs. We thus hope that this study will aid in the fight against MP pollution.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
