Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The field of dark matter detection is a highly visible and highly competitive one. In this paper, we propose recommendations for presenting dark matter direct detection results particularly suited for weak-scale dark matter searches, although we believe the spirit of the recommendations can apply more broadly to searches for other dark matter candidates, such as very light dark matter or axions. To translate experimental data into a final published result, direct detection collaborations must make a series of choices in their analysis, ranging from how to model astrophysical parameters to how to make statistical inferences based on observed data.more »Free, publicly-accessible full text available October 1, 2022
-
Abstract Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detailmore »Free, publicly-accessible full text available July 1, 2023
-
Free, publicly-accessible full text available July 1, 2023
-
Abstract A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360±60)ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fit to the data to describe the krypton evolution in the liquid and gas volumesmore »Free, publicly-accessible full text available April 29, 2023
-
Abstract The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the
Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$ Rn activity concentration of$$^{222}$$ in$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ of xenon. The knowledge of the distribution of the$$3.2\,\mathrm{t}$$ Rn sources allowed us to selectivelymore »$$^{222}$$ -
Abstract Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above $$\sim $$ ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $$^{136} \hbox {Xe}$$ 136 Xe at its Q value, $$Q_{\beta \beta }\simeq 2.46\,\hbox {MeV}$$ Q β β ≃ 2.46 MeV . For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at $$1\,\sigma /\mu $$ 1 σ / μ is as lowmore »