skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Di_Martino, Catello"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we i) analyze and classify real-world failures of Kubernetes (the most popular container orchestration system), ii) develop a framework to perform a fault/error injection campaign targeting the data store preserving the cluster state, and iii) compare results of our fault/error injection experiments with real-world failures, showing that our fault/error injections can recreate many real-world failure patterns. The paper aims to address the lack of studies on systematic analyses of Kubernetes failures to date. Our results show that even a single fault/error (e.g., a bit-flip) in the data stored can propagate, causing cluster-wide failures (3% of injections), service networking issues (4%), and service under/over provisioning (24%). Errors in the fields tracking dependencies between object caused 51% of such cluster-wide failures. We argue that controlled fault/error injection-based testing should be employed to proactively assess Kubernetes' resiliency and guide the design of failure mitigation strategies. 
    more » « less
    Free, publicly-accessible full text available April 17, 2025