skip to main content

Search for: All records

Creators/Authors contains: "Dias, H. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guest Editors Linda H. Doerrer and Rasika Dias introduce the spotlight collection: “Fluorinated ligands and their effects on physical properties and chemical reactivity”. 
    more » « less
    Free, publicly-accessible full text available June 13, 2024
  2. Described herein are the synthesis, structure, and photophysics of the iodo-substituted cyclic trinuclear copper( i ) complex, Cu 3 [4-I-3,5-(CF 3 ) 2 Pz] 3 supported by a highly-fluorinated pyrazolate in comparison with its previously reported 4-Br/4-Cl analogues. The crystal structure is stabilised by multiple supramolecular interactions of Cu 3 ⋯I and hydrogen/halogen bonding. The photophysical properties and supramolecular interactions are investigated experimentally/computationally for all three 4-halo complexes vis-à-vis relativistic effects. 
    more » « less
    Free, publicly-accessible full text available March 28, 2024
  3. Free, publicly-accessible full text available January 30, 2024
  4. Free, publicly-accessible full text available October 15, 2023
  5. A useful ligand involving three pyridyl donor arms and fluorocarbon substituents surrounding the coordination pocket has been assembled and utilized in coinage metal chemistry. This tris(pyridyl)borate serves as an excellent ligand support for the stabilization of ethylene complexes of copper, silver and gold. 
    more » « less
  6. Homoleptic, tetranuclear copper( i ) pyrazolates {[3,5-( t -Bu) 2 Pz]Cu} 4 , {[3-(CF 3 )-5-( t -Bu)Pz]Cu} 4 , and {[4-Br-3,5-( i -Pr) 2 Pz]Cu} 4 are excellent stand-alone catalysts for azide–alkyne cycloaddition reactions (CuAAC). This work demonstrates that a range of pyrazolates, including those with electron donating and electron-withdrawing groups to sterically demanding substituents on the pyrazolyl backbones, can serve as effective ligand supports on tetranuclear copper catalysts. However, in contrast to the tetramers and also highly fluorinated {[3,5-(CF 3 ) 2 Pz]Cu} 3 , trinuclear copper( i ) complexes such as {[3,5-( i -Pr) 2 Pz]Cu} 3 and {[3-(CF 3 )-5-(CH 3 )Pz]Cu} 3 supported by relatively electron rich pyrazolates display poor catalytic activity in CuAAC. The behavior and degree of aggregation of several of these copper( i ) pyrazolates in solution were examined using vapor pressure osmometry. Copper( i ) complexes such as {[3,5-(CF 3 ) 2 Pz]Cu} 3 and {[3-(CF 3 )-5-( t -Bu)Pz]Cu} 4 with electron withdrawing pyrazolates were found to break up in solution to different degrees producing smaller aggregates while those such as {[3,5-( i -Pr) 2 Pz]Cu} 3 and {[3,5-( t -Bu) 2 Pz]Cu} 4 with electron rich pyrazolates remain intact. In addition, kinetic experiments were performed to understand the unusual activity of tetranuclear copper( i ) pyrazolate systems. 
    more » « less
  7. null (Ed.)
    Although unsaturated organotrifluoroborates are common synthons in metal–organic chemistry, their transition metal complexes have received little attention. [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Cu(CH 2 CHBF 3 ), (SIPr)Cu(MeCN)(CH 2 CHBF 3 ) and [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Ag(CH 2 CHBF 3 ) represent rare, isolable molecules featuring a vinyltrifluoroborate ligand on coinage metals. The X-ray crystal structures show the presence of three-coordinate metal sites in these complexes. The vinyltrifluoroborate group binds asymmetrically to the metal site in [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) (M = Cu, Ag) with relatively closer M–C(H) 2 distances. The computed structures of [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) and M(CH 2 CHBF 3 ), however, have shorter M–C(H)BF 3 distances than M–C(H) 2 . These molecules feature various inter- or intra-molecular contacts involving fluorine of the BF 3 group, possibly affecting these M–C distances. The binding energies of [CH 2 CHBF 3 ] − to Cu + , Ag + and Au + have been calculated at the wB97XD/def2-TZVP level of theory, in the presence and absence of the supporting ligand CH 2 (3,5-(CH 3 ) 2 Pz) 2 . The calculation shows that Au + has the strongest binding to the [CH 2 CHBF 3 ] − ligand, followed by Cu + and Ag + , irrespective of the presence of the supporting ligand. However, in all three metals, the supporting ligand weakens the binding of olefin to the metal. The same trends were also found from the analysis of the σ-donation and π-backbonding interactions between the metal fragment and the π and π* orbitals of [CH 2 CHBF 3 ] − . 
    more » « less
  8. Abstract

    Propylene is a crucial building block to produce many industrial‐scale chemicals including polypropylene. The separation of propylene from propane to reach the high‐purity levels needed for downstream applications is a difficult task due to the close similarities in their physical properties. The olefin/paraffin separation including that involving propylene mainly relies on highly energy‐intensive distillation processes and accounts for nearly 0.3% of the global energy consumption. The utility of a copper complex supported by a fluorinated bis(pyrazolyl)borate is demonstrated to accomplish the separation of propylene from propane repeatedly, under mild conditions with high selectivity. Complete characterization of a rare, copper(I) propylene complex is also reported including the molecular structure.

    more » « less
  9. null (Ed.)
    Ethylene complexes of gold( i ) have been stabilized by electron-rich, κ 2 -bound tris(pyrazolyl)borate ligands. Large up-field shifts of olefinic carbon NMR resonances and relatively long CC distances of gold bound ethylene are indicative of significant Au( i ) → ethylene π-backbonding relative to the analog supported by a weakly donating ligand, consistent with the computational data. 
    more » « less