Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - have emerged as critical components in facilitating effective data sharing and collaboration. This paper compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. The aim of this review is to describe archives that provide researchers with tools to store, share, and reanalyze both human and non-human neurophysiology data based on criteria that are of interest to the neuroscientific community. The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to researchers by implementing a common standard. As the necessity for integrating large-scale analysis into data repository platforms continues to grow within the neuroscientific community, this article will highlight the various analytical and customizable tools developed within the chosen archives that may advance the field of neuroinformatics.more » « less
-
A ubiquitous problem in aggregating data across different experimental and observational data sources is a lack of software infrastructure that enables flexible and extensible standardization of data and metadata. To address this challenge, we developed HDMF, a hierarchical data modeling framework for modern science data standards. With HDMF, we separate the process of data standardization into three main components: (1) data modeling and specification, (2) data I/O and storage, and (3) data interaction and data APIs. To enable standards to support the complex requirements and varying use cases throughout the data life cycle, HDMF provides object mapping infrastructure to insulate and integrate these various components. This approach supports the flexible development of data standards and extensions, optimized storage backends, and data APIs, while allowing the other components of the data standards ecosystem to remain stable. To meet the demands of modern, large-scale science data, HDMF provides advanced data I/O functionality for iterative data write, lazy data load, and parallel I/O. It also supports optimization of data storage via support for chunking, compression, linking, and modular data storage. We demonstrate the application of HDMF in practice to design NWB 2.0, a modern data standard for collaborative science across the neurophysiology community.more » « less
An official website of the United States government
