skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Dickson, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in Neural Radiance Field (NeRF)-based methods have enabled high-fidelity novel view synthesis for video with dynamic elements. However, these methods often require expensive hardware, take days to process a second-long video and do not scale well to longer videos. We create an end-to-end pipeline for creating dynamic 3D video from a monocular video that can be run on consumer hardware in minutes per second of footage, not days. Our pipeline handles the estimation of the camera parameters, depth maps, 3D reconstruction of dynamic foreground and static background elements, and the rendering of the 3D video on a computer or VR headset. We use a state-of-the-art visual transformer model to estimate depth maps which we use to scale COLMAP poses and enable RGB-D fusion with estimated depth data. In our preliminary experiments, we rendered the output in a VR headset and visually compared the method against ground-truth datasets and state-of-the-art NeRF-based methods. 
    more » « less
  2. We investigate how real-time, 360 degree view synthesis can be achieved on current virtual reality hardware from a single panoramic image input. We introduce a light-weight method to automatically convert a single panoramic input into a multi-cylinder image representation that supports real-time, free-viewpoint view synthesis rendering for virtual reality. We apply an existing convolutional neural network trained on pinhole images to a cylindrical panorama with wrap padding to ensure agreement between the left and right edges. The network outputs a stack of semi-transparent panoramas at varying depths which can be easily rendered and composited with over blending. Quantitative experiments and a user study show that the method produces convincing parallax and fewer artifacts than a textured mesh representation. 
    more » « less