skip to main content


Search for: All records

Creators/Authors contains: "Diefenderfer, Heida L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Water temperature is a critical ecological indicator; however, few studies have statistically modeled century‐scale trends in riverine or estuarine water temperature, or their cause. Here, we recover, digitize, and analyze archival temperature measurements from the 1850s onward to investigate how and why water temperatures in the lower Columbia River are changing. To infill data gaps and explore changes, we develop regression models of daily historical Columbia River water temperature using time‐lagged river flow and air temperature as the independent variables. Models were developed for three time periods (mid‐19th, mid‐20th, and early 21st century), using archival and modern measurements (1854–1876; 1938–present). Daily and monthly averaged root‐mean‐square errors overall are 0.89°C and 0.77°C, respectively for the 1938–2018 period. Results suggest that annual averaged water temperature increased by 2.2°C ± 0.2°C since the 1850s, a rate of 1.3°C ± 0.1°C/century. Increased water temperatures are seasonally dependent. An increase of approximately 2.0°C ± 0.2°C/century occurs in the July–Dec time‐frame, while springtime trends are statistically insignificant. Rising temperatures change the probability of exceeding ecologically important thresholds; since the 1850s, the number of days with water temperatures over 20°C increased from ~5 to 60 per year, while the number below 2°C decreased from ~10 to 0 days/per year. Overall, the modern system is warmer, but exhibits less temperature variability. The reservoir system reduces sensitivity to short‐term atmospheric forcing. Statistical experiments within our modeling framework suggest that increased water temperature is driven by warming air temperatures (~29%), altered river flow (~14%), and water resources management (~57%).

     
    more » « less
  2. null (Ed.)
    ABSTRACT Coastal margins are important areas of materials flux that link terrestrial and marine ecosystems. Consequently, climate-mediated changes to coastal terrestrial ecosystems and hydrologic regimes have high potential to influence nearshore ocean chemistry and food web dynamics. Research from tightly coupled, high-flux coastal ecosystems can advance understanding of terrestrial–marine links and climate sensitivities more generally. In the present article, we use the northeast Pacific coastal temperate rainforest as a model system to evaluate such links. We focus on key above- and belowground production and hydrological transport processes that control the land-to-ocean flow of materials and their influence on nearshore marine ecosystems. We evaluate how these connections may be altered by global climate change and we identify knowledge gaps in our understanding of the source, transport, and fate of terrestrial materials along this coastal margin. Finally, we propose five priority research themes in this region that are relevant for understanding coastal ecosystem links more broadly. 
    more » « less