skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Dikin, Dmitriy A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vincent Dusastre (Ed.)
    Alternative solid-electrolytes are the next key step in advancing lithium batteries with better thermal and chemical stability. A soft-solid electrolyte (Adpn)2LiPF6 (Adpn = adiponitrile) is synthesized and characterized, which exhibits high thermal and electrochemical stability and good ionic conductivity, overcoming several limitations of conventional organic and ceramic materials. The surface of the electrolyte possesses a liquid nano-layer of Adpn that links grains for a facile ionic conduction without high pressure/temperature treatments. Further, the material can quickly self-heal if fractured and provides liquid-like conduction paths via the grain boundaries. A significantly high ion conductivity (~ 10-4 S/cm) and lithium-ion transference number (0.54) are obtained due to weak interactions between “hard” (charge-dense) Li+ ions and “soft” (electronically polarizable) -C≡N group of Adpn. Molecular simulations predict that Li+ ions migrate at the co-crystal grain boundaries with a (preferentially) lower Ea and within the interstitial regions between the co-crystals with higher Ea, where the bulk conductivity comprises a smaller but extant contribution. These cocrystals establish a special concept of crystal design to increase the thermal stability of LiPF6 by separating ions in Adpn solvent matrix, and also exhibit a unique mechanism of ion-conduction via low-resistance grain-boundaries, which is contrasting to ceramics or gel-electrolytes. 
    more » « less