- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dikin, Dmitriy A. (2)
-
Aguirre, Jordan (1)
-
Chen, Chunxu (1)
-
Chereddy, Sumanth (1)
-
Chinnam, Parameswara Rao (1)
-
Fall, Birane (1)
-
Hajfathalian, Maryam (1)
-
Lin, Gaojian (1)
-
Prakash, Prabhat (1)
-
Sonnenberg, Laura A. (1)
-
Tang, Yichao (1)
-
Turner, Kevin T. (1)
-
Venkatnathan, Arun (1)
-
Wunder, Stephanie L. (1)
-
Yin, Jie (1)
-
Zdilla, Michael J. (1)
-
Zhang, Qiuting (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Vincent Dusastre (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vincent Dusastre (Ed.)Alternative solid-electrolytes are the next key step in advancing lithium batteries with better thermal and chemical stability. A soft-solid electrolyte (Adpn)2LiPF6 (Adpn = adiponitrile) is synthesized and characterized, which exhibits high thermal and electrochemical stability and good ionic conductivity, overcoming several limitations of conventional organic and ceramic materials. The surface of the electrolyte possesses a liquid nano-layer of Adpn that links grains for a facile ionic conduction without high pressure/temperature treatments. Further, the material can quickly self-heal if fractured and provides liquid-like conduction paths via the grain boundaries. A significantly high ion conductivity (~ 10-4 S/cm) and lithium-ion transference number (0.54) are obtained due to weak interactions between “hard” (charge-dense) Li+ ions and “soft” (electronically polarizable) -C≡N group of Adpn. Molecular simulations predict that Li+ ions migrate at the co-crystal grain boundaries with a (preferentially) lower Ea and within the interstitial regions between the co-crystals with higher Ea, where the bulk conductivity comprises a smaller but extant contribution. These cocrystals establish a special concept of crystal design to increase the thermal stability of LiPF6 by separating ions in Adpn solvent matrix, and also exhibit a unique mechanism of ion-conduction via low-resistance grain-boundaries, which is contrasting to ceramics or gel-electrolytes.more » « less
-
Zhang, Qiuting ; Tang, Yichao ; Hajfathalian, Maryam ; Chen, Chunxu ; Turner, Kevin T. ; Dikin, Dmitriy A. ; Lin, Gaojian ; Yin, Jie ( , ACS Applied Materials & Interfaces)