Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Domain experts play an important role in data science, as their knowledge can unlock valuable insights from data. As they often lack technical skills required to analyze data, they need collaborations with technical experts. In these joint efforts, productive collaborations are critical not only in the phase of constructing a data science task, but more importantly, during the execution of a task. This need stems from the inherent complexity of data science, which often involves user-defined functions or machine-learning operations. Consequently, collaborators want various interactions during runtime, such as pausing/resuming the execution, inspecting an operator's state, and modifying an operator's logic. To achieve the goal, in the past few years we have been developing an open-source system called Texera to support collaborative data analytics using GUI-based workflows as cloud services. In this paper, we present a holistic view of several important design principles we followed in the design and implementation of the system. We focus on different methods of sending messages to running workers, how these methods are adopted to support various runtime interactions from users, and their trade-offs on both performance and consistency. These principles enable Texera to provide powerful user interactions during a workflow execution to facilitate efficient collaborations in data analytics.more » « lessFree, publicly-accessible full text available August 30, 2025
-
ABSTRACT Herschel surveys have found large numbers of sources with red far-IR colours, and spectral energy distributions (SEDs) rising from 250 to 500 µm: 500 risers. The nature and role of these sources is not fully understood. We here present Submillimeter Array (SMA) interferometric imaging at 200 GHz of a complete sample of five 500 risers with F500 >44 mJy selected within a 4.5 deg2 region of the XMMLSS field. These observations can resolve the separate components of multiple sources and allow cross identification at other wavelengths using the extensive optical-to-IR data in this field. Of our five targets, we find that two are likely gravitationally lensed, two are multiple sources, and one an isolated single source. Photometric redshifts, using optical-to-IR data and far-IR/submm data, suggest they lie at redshifts $z \sim 2.5\!-\!3.5$. Star formation rates and stellar masses estimated from the SEDs show that the majority of our sources lie on the star-formation rate-stellar mass ‘main sequence’, though with outliers both above and below this relation. Of particular interest is our most multiple source, which consists of three submm emitters and one submm-undetected optical companion within a 7 arcsec region, all with photometric redshifts ∼3. One of the submm emitters in this group lies above the ‘main sequence’, while the optical companion lies well below the relation, and has an estimated stellar mass of $3.3 \pm 1.3 \times 10^{11}$ M$_{\odot }$. We suggest this object is a forming brightest cluster galaxy (BCG) in the process of accreting actively star forming companions.
-
Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional “root econom- ics space” synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data includ- ing 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reli- ance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.more » « lessFree, publicly-accessible full text available April 16, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
Electron-neutrino charged-current interactions with xenon nuclei were modeled in the nEXO neutrinoless double-decay detector (metric ton, 90%, 10%) to evaluate its sensitivity to supernova neutrinos. Predictions for event rates and detectable signatures were modeled using the Model of Argon Reaction Low Energy Yields (MARLEY) event generator. We find good agreement between MARLEY’s predictions and existing theoretical calculations of the inclusive cross sections at supernova neutrino energies. The interactions modeled by MARLEY were simulated within the nEXO simulation framework and were run through an example reconstruction algorithm to determine the detector’s efficiency for reconstructing these events. The simulated data, incorporating the detector response, were used to study the ability of nEXO to reconstruct the incident electron-neutrino spectrum and these results were extended to a larger xenon detector of the same isotope enrichment. We estimate that nEXO will be able to observe electron-neutrino interactions with xenon from supernovae as far as 5–8 kpc from Earth, while the ability to reconstruct incident electron-neutrino spectrum parameters from observed interactions in nEXO is limited to closer supernovae.
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025