- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alva, Vikram (1)
-
Andre, Katherine (1)
-
Bisson, Alex (1)
-
Carmona, Catherine (1)
-
Curtis, Zachary (1)
-
Dodge, Ashley (1)
-
Dodge, Ashley C. (1)
-
Durant, Matthew (1)
-
Escudeiro, Pedro (1)
-
Huang, Linda S. (1)
-
Isaac, Berith (1)
-
Kwak, Jasmin (1)
-
Leland, Olivia (1)
-
Majano, Maira (1)
-
Mallon, John (1)
-
Martinez_Pastor, Mar (1)
-
Maynard, Sharra (1)
-
Mucelli, Xheni (1)
-
Pohlschroder, Mechthild (1)
-
Rados, Theopi (1)
-
- Filter by Editor
-
-
Bloom, Kerry (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bactofilins are rigid, nonpolar bacterial cytoskeletal filaments that link cellular processes to specific curvatures of the cytoplasmic membrane. Although homologs of bactofilins have been identified in archaea and eukaryotes, functional studies have remained confined to bacterial systems. Here, we characterize representatives of two families of archaeal bactofilins from the pleomorphic archaeonHaloferax volcanii, halofilin A (HalA) and halofilin B (HalB). HalA and HalB polymerize in vitro, assembling into straight bundles. HalA polymers are highly dynamic and accumulate at positive membrane curvatures in vivo, whereas HalB forms more static foci that localize in areas of local negative curvatures on the outer cell surface. Gene deletions and live-cell imaging show that halofilins are critical in maintaining morphological integrity during shape transition from disk (sessile) to rod (motile). Morphological defects in ΔhalAresult in accumulation of highly positive curvatures in rods but not in disks. Conversely, disk-shaped cells are exclusively affected byhalBdeletion, resulting in flatter cells. Furthermore, while ΔhalAand ΔhalBcells imprecisely determine the future division plane, defects arise predominantly during the disk-to-rod shape remodeling. The deletion ofhalAin the haloarchaeonHalobacterium salinarum, whose cells are consistently rod-shaped, impacted morphogenesis but not cell division. Increased levels of halofilins enforced drastic deformations in cells devoid of the S-layer, suggesting that HalB polymers are more stable at defective S-layer lattice regions. Our results suggest that halofilins might play a significant mechanical scaffolding role in addition to possibly directing envelope synthesis.more » « less
-
Seitz, Brian C.; Mucelli, Xheni; Majano, Maira; Wallis, Zoey; Dodge, Ashley C.; Carmona, Catherine; Durant, Matthew; Maynard, Sharra; Huang, Linda S. (, Molecular Biology of the Cell)Bloom, Kerry (Ed.)AMA1 and SPS1 control distinct aspects of meiosis II spindle disassembly, with AMA1 affecting the loss of Ase1 and Cin8 during meiosis II spindle disassembly, while SPS1 affects Bim1. The Anaphase Promoting Complex and meiotic/mitotic exit pathways seem to regulate similar targets in meiosis as mitosis, despite utilizing meiosis-specific regulators in those pathways.more » « less
An official website of the United States government
