skip to main content

Search for: All records

Creators/Authors contains: "Dokter, Adriaan M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Storch, David (Ed.)
    Free, publicly-accessible full text available April 1, 2023
  2. Abstract Weather radar networks have great potential for continuous and long-term monitoring of aerial biodiversity of birds, bats, and insects. Biological data from weather radars can support ecological research, inform conservation policy development and implementation, and increase the public’s interest in natural phenomena such as migration. Weather radars are already used to study animal migration, quantify changes in populations, and reduce aerial conflicts between birds and aircraft. Yet efforts to establish a framework for the broad utilization of operational weather radar for biodiversity monitoring are at risk without suitable data policies and infrastructure in place. In Europe, communities of meteorologists and ecologists have made joint efforts toward sharing and standardizing continent-wide weather radar data. These efforts are now at risk as new meteorological data exchange policies render data useless for biodiversity monitoring. In several other parts of the world, weather radar data are not even available for ecological research. We urge policy makers, funding agencies, and meteorological organizations across the world to recognize the full potential of weather radar data. We propose several actions that would ensure the continued capability of weather radar networks worldwide to act as powerful tools for biodiversity monitoring and research.
    Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available March 8, 2023
  4. Sills, Jennifer (Ed.)
  5. Weather radars provide detailed information on aerial movements of organisms. However, interpreting fine-scale radar imagery remains challenging because of changes in aerial sampling altitude with distance from the radar. Fine-scale radar imagery has primarily been used to assess mass exodus at sunset to study stopover habitat associations. Here, we present a method that enables a more intuitive integration of information across elevation scans projected in a two-dimensional spatial image of fine-scale radar reflectivity. We applied this method on nights of intense bird migration to demonstrate how the spatial distribution of migrants can be explored at finer spatial scales and across multiple radars during the higher flying en-route phase of migration. The resulting reflectivity maps enable explorative analysis of factors influencing their regional and fine-scale distribution. We illustrate the method’s application by generating time-series of composites of up to 20 radars, achieving a nearly complete spatial coverage of a large part of Northwest Europe. These visualizations are highly useful in interpreting regional-scale migration patterns and provide detailed information on bird movements in the landscape and aerial environment.
  6. Species extinctions have defined the global biodiversity crisis, but extinction begins with loss in abundance of individuals that can result in compositional and functional changes of ecosystems. Using multiple and independent monitoring networks, we report population losses across much of the North American avifauna over 48 years, including once-common species and from most biomes. Integration of range-wide population trajectories and size estimates indicates a net loss approaching 3 billion birds, or 29% of 1970 abundance. A continent-wide weather radar network also reveals a similarly steep decline in biomass passage of migrating birds over a recent 10-year period. This loss of bird abundance signals an urgent need to address threats to avert future avifaunal collapse and associated loss of ecosystem integrity, function, and services.