skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Doku, Ronald"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Edge Computing (EC) has seen a continuous rise in its popularity as it provides a solution to the latency and communication issues associated with edge devices transferring data to remote servers. EC achieves this by bringing the cloud closer to edge devices. Even though EC does an excellent job of solving the latency and communication issues, it does not solve the privacy issues associated with users transferring personal data to the nearby edge server. Federated Learning (FL) is an approach that was introduced to solve the privacy issues associated with data transfers to distant servers. FL attempts to resolve this issue by bringing the code to the data, which goes against the traditional way of sending the data to remote servers. In FL, the data stays on the source device, and a Machine Learning (ML) model used to train the local data is brought to the end device instead. End devices train the ML model using local data and then send the model updates back to the server for aggregation. However, this process of asking random devices to train a model using its local data has potential risks such as a participant poisoning the model using malicious data for training to produce bogus parameters. In this paper, an approach to mitigate data poisoning attacks in a federated learning setting is investigated. The application of the approach is highlighted, and the practical and secure nature of this approach is illustrated as well using numerical results. 
    more » « less
  2. "Knowledge is power" is an old adage that has been found to be true in today's information age. Knowledge is derived from having access to information. The ability to gather information from large volumes of data has become an issue of relative importance. Big Data Analytics (BDA) is the term coined by researchers to describe the art of processing, storing and gathering large amounts of data for future examination. Data is being produced at an alarming rate. The rapid growth of the Internet, Internet of Things (IoT) and other technological advances are the main culprits behind this sustained growth. The data generated is a reflection of the environment it is produced out of, thus we can use the data we get out of systems to figure out the inner workings of that system. This has become an important feature in cybersecurity where the goal is to protect assets. Furthermore, the growing value of data has made big data a high value target. In this paper, we explore recent research works in cybersecurity in relation to big data. We highlight how big data is protected and how big data can also be used as a tool for cybersecurity. We summarize recent works in the form of tables and have presented trends, open research challenges and problems. With this paper, readers can have a more thorough understanding of cybersecurity in the big data era, as well as research trends and open challenges in this active research area. 
    more » « less