skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dola, Swaroopa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNN) are being used in a wide range of applications including safety-critical systems. Several DNN test gen- eration approaches have been proposed to generate fault-revealing test inputs. However, the existing test generation approaches do not systematically cover the input data distribution to test DNNs with diverse inputs, and none of the approaches investigate the re- lationship between rare inputs and faults. We propose cit4dnn, an automated black-box approach to generate DNN test sets that are feature-diverse and that comprise rare inputs. cit4dnn constructs diverse test sets by applying combinatorial interaction testing to the latent space of generative models and formulates constraints over the geometry of the latent space to generate rare and fault-revealing test inputs. Evaluation on a range of datasets and models shows that cit4dnn generated tests are more feature diverse than the state-of-the-art, and can target rare fault-revealing testing inputs more effectively than existing methods. 
    more » « less
  2. Testing deep neural networks (DNNs) has garnered great interest in the recent years due to their use in many applications. Black-box test adequacy measures are useful for guiding the testing process in covering the input domain. However, the absence of input specifications makes it challenging to apply black-box test adequacy measures in DNN testing. The Input Distribution Coverage (IDC) framework addresses this challenge by using a variational autoencoder to learn a low dimensional latent representation of the input distribution, and then using that latent space as a coverage domain for testing. IDC applies combinatorial interaction testing on a partitioning of the latent space to measure test adequacy. Empirical evaluation demonstrates that IDC is cost-effective, capable of detecting feature diversity in test inputs, and more sensitive than prior work to test inputs generated using different DNN test generation methods. The findings demonstrate that IDC overcomes several limitations of white-box DNN coverage approaches by discounting coverage from unrealistic inputs and enabling the calculation of test adequacy metrics that capture the feature diversity present in the input space of DNNs. 
    more » « less
  3. null (Ed.)