skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dolan-Gavitt, Brendan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Deepfakes have become a dual-use technology with applications in the domains of art, science, and industry. However, the technology can also be leveraged maliciously in areas such as disinformation, identity fraud, and harassment. In response to the technology's dangerous potential many deepfake creation communities have been deplatformed, including the technology's originating community – r/deepfakes. Opening in February 2018, just eight days after the removal of r/deepfakes, MrDeepFakes (MDF) went online as a privately owned platform to fulfill the role of community hub, and has since grown into the largest dedicated deepfake creation and discussion platform currently online. This position of community hub is balanced against the site's other main purpose, which is the hosting of deepfake pornography depicting public figures- produced without consent. In this paper we explore the two largest deepfake communities that have existed via a mixed methods approach utilizing quantitative and qualitative analysis. We seek to identify how these platforms were and are used by their members, what opinions these deepfakers hold about the technology and how it is seen by society at large, and identify how deepfakes-as-disinformation is viewed by the community. We find that there is a large emphasis on technical discussion on these platforms, intermixed with potentially malicious content. Additionally, we find the deplatforming of deepfake communities early in the technology's life has significantly impacted trust regarding alternative community platforms. 
    more » « less
  3. Automating hardware design could obviate a signif-icant amount of human error from the engineering process and lead to fewer errors. Verilog is a popular hardware description language to model and design digital systems, thus generating Verilog code is a critical first step. Emerging large language models (LLMs) are able to write high-quality code in other programming languages. In this paper, we characterize the ability of LLMs to generate useful Verilog. For this, we fine-tune pre-trained LLMs on Verilog datasets collected from GitHub and Verilog textbooks. We construct an evaluation framework comprising test-benches for functional analysis and a flow to test the syntax of Verilog code generated in response to problems of varying difficulty. Our findings show that across our problem scenarios, the fine-tuning results in LLMs more capable of producing syntactically correct code (25.9% overall). Further, when analyzing functional correctness, a fine-tuned open-source CodeGen LLM can outperform the state-of-the-art commercial Codex LLM (6.5% overall). We release our training/evaluation scripts and LLM checkpoints as open source contributions. 
    more » « less
  4. Peripheral hardware in modern computers is typically assumed to be secure and not malicious, and device drivers are implemented in a way that trusts inputs from hardware. However, recent vulnerabilities such as Broadpwn have demonstrated that attackers can exploit hosts through vulnerable peripherals, highlighting the importance of securing the OS-peripheral boundary. In this paper, we propose a hardware-free concolic-augmented fuzzer targeting WiFi and Ethernet drivers, and a technique for generating high-quality initial seeds, which we call golden seeds, that allow fuzzing to bypass difficult code constructs during driver initialization. Compared to prior work using symbolic execution or greybox fuzzing, Drifuzz is more successful at automatically finding inputs that allow network interfaces to be fully initialized, and improves fuzzing coverage by 214% (3.1×) in WiFi drivers and 60% (1.6×) for Ethernet drivers. During our experiments with fourteen PCI and USB network drivers, we find twelve previously unknown bugs, two of which were assigned CVEs. 
    more » « less
  5. null (Ed.)
    Use-after-free (UAF) vulnerabilities, in which dangling pointers remain after memory is released, remain a persistent problem for applications written in C and C++. In order to protect legacy code, prior work has attempted to track pointer propagation and invalidate dangling pointers at deallocation time, but this work has gaps in coverage, as it lacks support for tracking program variables promoted to CPU registers. Moreover, we find that these gaps can significantly hamper detection of UAF bugs: in a preliminary study with OSS-Fuzz, we found that more than half of the UAFs in real-world programs we examined (10/19) could not be detected by prior systems due to register promotion. In this paper, we introduce HeapExpo, a new system that fills this gap in coverage by parsimoniously identifying potential dangling pointer variables that may be lifted into registers by the compiler and marking them as volatile. In our experiments, we find that HeapExpo effectively detects UAFs missed by other systems with an overhead of 35% on the majority of SPEC CPU2006 and 66% when including two benchmarks that have high amounts of pointer propagation. 
    more » « less
  6. null (Ed.)
    Fuzz testing has been used to find bugs in programs since the 1990s, but despite decades of dedicated research, there is still no consensus on which fuzzing techniques work best. One reason for this is the paucity of ground truth: bugs in real programs with known root causes and triggering inputs are difficult to collect at a meaningful scale. Bug injection technologies that add synthetic bugs into real programs seem to offer a solution, but the differences in finding these synthetic bugs versus organic bugs have not previously been explored at a large scale. Using over 80 years of CPU time, we ran eight fuzzers across 20 targets from the Rode0day bug-finding competition and the LAVA-M corpus. Experiments were standardized with respect to compute resources and metrics gathered. These experiments show differences in fuzzer performance as well as the impact of various configuration options. For instance, it is clear that integrating symbolic execution with mutational fuzzing is very effective and that using dictionaries improves performance. Other conclusions are less clear-cut; for example, no one fuzzer beat all others on all tests. It is noteworthy that no fuzzer found any organic bugs (i.e., one reported in a CVE), despite 50 such bugs being available for discovery in the fuzzing corpus. A close analysis of results revealed a possible explanation: a dramatic difference between where synthetic and organic bugs live with respect to the "main path" discovered by fuzzers. We find that recent updates to bug injection systems have made synthetic bugs more difficult to discover, but they are still significantly easier to find than organic bugs in our target programs. Finally, this study identifies flaws in bug injection techniques and suggests a number of axes along which synthetic bugs should be improved. 
    more » « less
  7. null (Ed.)
    When working with real world programs, dynamic analyses often must be run on a whole-system instead of just a single binary. Existing whole-system dynamic analysis platforms generally require analyses to be written in compiled languages, a suboptimal choice for many iterative analysis tasks. Furthermore, these platforms leave analysts with a split view between the behavior of the system under analysis and the analysis itself---in particular the system being analyzed must commonly be controlled manually while analysis scripts are run. To improve this process, we designed and implemented PyPANDA, a Python interface to the PANDA dynamic analysis platform. PyPANDA unifies the gap between guest virtual machines behavior and analysis tasks; enables painless integrations with other program analysis tools; and greatly lowers the barrier of entry to whole-system dynamic analysis. The capabilities of PyPANDA are demonstrated by using it to dynamically evaluate the accuracy of three binary analysis frameworks, track heap allocations across multiple processes, and synchronize state between PANDA and a binary analysis platform. Significant challenges were overcome to integrate a scripting language into PANDA with minimal performance impact. 
    more » « less
  8. null (Ed.)
    Closely monitoring the behavior of a software system during its execution enables developers and analysts to observe, and ultimately understand, how it works. This kind of dynamic analysis can be instrumental to reverse engineering, vulnerability discovery, exploit development, and debugging. While these analyses are typically well-supported for homogeneous desktop platforms (e.g., x86 desktop PCs), they can rarely be applied in the heterogeneous world of embedded systems. One approach to enable dynamic analyses of embedded systems is to move software stacks from physical systems into virtual environments that sufficiently model hardware behavior. This process which we call “rehosting” poses a significant research challenge with major implications for security analyses. Although rehosting has traditionally been an unscientific and ad-hoc endeavor undertaken by domain experts with varying time and resources at their disposal, researchers are beginning to address rehosting challenges systematically and in earnest. In this paper, we establish that emulation is insufficient to conduct large-scale dynamic analysis of real-world hardware systems and present rehosting as a firmware-centric alternative. Furthermore, we taxonomize preliminary rehost- ing efforts, identify the fundamental components of the rehosting process, and propose directions for future research. 
    more » « less
  9. Mobile applications (apps) have exploded in popularity, with billions of smartphone users using millions of apps available through markets such as the Google Play Store or the Apple App Store. While these apps have rich and useful functionality that is publicly exposed to end users, they also contain hidden behaviors that are not disclosed, such as backdoors and blacklists designed to block unwanted content. In this paper, we show that the input validation behavior---the way the mobile apps process and respond to data entered by users---can serve as a powerful tool for uncovering such hidden functionality. We therefore have developed a tool, InputScope, that automatically detects both the execution context of user input validation and also the content involved in the validation, to automatically expose the secrets of interest. We have tested InputScope with over 150,000 mobile apps, including popular apps from major app stores and pre-installed apps shipped with the phone, and found 12,706 mobile apps with backdoor secrets and 4,028 mobile apps containing blacklist secrets. 
    more » « less