Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper we describe the long‐time behavior of the non‐cutoff Boltzmann equation with soft potentials near a global Maxwellian background on the whole space in the weakly collisional limit (that is, infinite Knudsen number ). Specifically, we prove that for initial data sufficiently small (independent of the Knudsen number), the solution displays several dynamics caused by the phase mixing/dispersive effects of the transport operator and its interplay with the singular collision operator. For ‐wavenumbers with , one sees anenhanced dissipationeffect wherein the characteristic decay time‐scale is accelerated to , where is the singularity of the kernel ( being the Landau collision operator, which is also included in our analysis); for , one seesTaylor dispersion, wherein the decay time‐scale is accelerated to . Additionally, we prove almost uniform phase mixing estimates. For macroscopic quantities such as the density , these bounds imply almost uniform‐in‐ decay of in due to phase mixing and dispersive decay.more » « less
-
Abstract We investigate the long‐time properties of the two‐dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles‐Howard stability condition on the Richardson number, we prove that the system experiences a shear‐buoyancy instability: the density variation and velocity undergo an inviscid damping while the vorticity and density gradient grow as . The result holds at least until the natural, nonlinear timescale . Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles‐Howard spectral stability condition; (B) a variation of the Fourier time‐dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.more » « less
-
Abstract We consider the Kuramoto–Sivashinsky equation (KSE) on the two-dimensional torus in the presence of advection by a given background shear flow. Under the assumption that the shear has a finite number of critical points and there are linearly growing modes only in the direction of the shear, we prove global existence of solutions with data in$$L^2$$ , using a bootstrap argument. The initial data can be taken arbitrarily large.more » « less
An official website of the United States government
