skip to main content

Search for: All records

Creators/Authors contains: "Dolch, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we present polarization profiles for 23 millisecond pulsars observed at 820 and 1500 MHz with the Green Bank Telescope as part of the NANOGrav pulsar timing array. We calibrate the data using Mueller matrix solutions calculated from observations of PSRs B1929+10 and J1022+1001. We discuss the polarization profiles, which can be used to constrain pulsar emission geometry, and present both the first published radio polarization profiles for nine pulsars and the discovery of very low-intensity average profile components (“microcomponents”) in four pulsars. We obtain the Faraday rotation measures for each pulsar and use them to calculate the Galactic magnetic field parallel to the line of sight for different lines of sight through the interstellar medium. We fit for linear and sinusoidal trends in time in the dispersion measure and Galactic magnetic field and detect magnetic field variations with a period of 1 yr in some pulsars, but overall find that the variations in these parameters are more consistent with a stochastic origin.
    Free, publicly-accessible full text available February 1, 2023
  2. It is the responsibility of today’s scientists, engineers, and educators to inspire and encourage our youth into technical careers that benefit our society. Too often, however, this responsibility is buried beneath daily job demands and the routines of teaching. Space Public Outreach Team (SPOT) programs leverage a train-the-trainer model to empower college students to make meaningful impacts in their local communities by engaging and inspiring younger students through science presentations. SPOT takes advantage of the excitement of space and the natural way college students serve as role models for children. The result is a win-win program for all involved. This paper describes the original Montana SPOT program, presents analyses demonstrating the success of SPOT, gives overviews of program adaptations in West Virginia and with the NANOGrav collaboration, describes how college student presenters are able to share complex topics, and discusses the importance of college student role models. We hope that our experiences with SPOT will help others implement similar strategies in their own communities.
  3. ABSTRACT We searched for an isotropic stochastic gravitational wave background in the second data release of the International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns in North America, Europe, and Australia. In our reference search for a power-law strain spectrum of the form $h_c = A(f/1\, \mathrm{yr}^{-1})^{\alpha }$, we found strong evidence for a spectrally similar low-frequency stochastic process of amplitude $A = 3.8^{+6.3}_{-2.5}\times 10^{-15}$ and spectral index α = −0.5 ± 0.5, where the uncertainties represent 95 per cent credible regions, using information from the auto- and cross-correlation terms between the pulsars in the array. For a spectral index of α = −2/3, as expected from a population of inspiralling supermassive black hole binaries, the recovered amplitude is $A = 2.8^{+1.2}_{-0.8}\times 10^{-15}$. None the less, no significant evidence of the Hellings–Downs correlations that would indicate a gravitational-wave origin was found. We also analysed the constituent data from the individual pulsar timing arrays in a consistent way, and clearly demonstrate that the combined international data set is more sensitive. Furthermore, we demonstrate that this combined data set produces comparable constraints to recent single-array data sets which have more data than the constituent parts of the combination. Future international data releases will deliver increasedmore »sensitivity to gravitational wave radiation, and significantly increase the detection probability.« less
    Free, publicly-accessible full text available January 19, 2023
  4. ABSTRACT

    In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.